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High-level integration of murine intestinal
transcriptomics data highlights the
importance of the complement system in
mucosal homeostasis
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Abstract

Background: The mammalian intestine is a complex biological system that exhibits functional plasticity in its response
to diverse stimuli to maintain homeostasis. To improve our understanding of this plasticity, we performed a high-level
data integration of 14 whole-genome transcriptomics datasets from samples of intestinal mouse mucosa. We used the
tool Centrality based Pathway Analysis (CePa), along with information from the Reactome database.

Results: The results show an integrated response of the mouse intestinal mucosa to challenges with agents
introduced orally that were expected to perturb homeostasis. We observed that a common set of pathways respond
to different stimuli, of which the most reactive was the Regulation of Complement Cascade pathway. Altered
expression of the Regulation of Complement Cascade pathway was verified in mouse organoids challenged with
different stimuli in vitro.

Conclusions: Results of the integrated transcriptomics analysis and data driven experiment suggest an important role
of epithelial production of complement and host complement defence factors in the maintenance of homeostasis.
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Background
The mammalian gastrointestinal (GI) tract is crucial for
the digestion and absorption of nutrients, energy metabol-
ism, and homeostasis of the gut barrier and mucosal im-
munity. A number of specialized adaptations of the
mammalian mucosal immune system have evolved to
maintain a peaceful co-existence with the microbial sym-
bionts while responding appropriately to prevent infection
by enteric pathogens [1, 2]. Changes in external factors
like the diet or intake of medication can influence micro-
biota ecology but also host metabolic processes [3–15].
The intestinal epithelium plays an important role in

orchestrating innate defences [16, 17] and signalling to the
numerous cells of the immune system located underneath
the epithelial layer [18–20].
The gut functionalities described above are attributed

to groups of genes organised into various functional
pathways [21–24] responding to physiological changes.
These pathways can be modulated by enteric infection,
toxic compounds in food or produced by the microbiota,
ionic and osmotic changes as well as substantial varia-
tions in nutrient availability. We hypothesized that sev-
eral pathways are involved in maintaining homeostasis,
the regulation of which depends on the type of perturb-
ation. The diverse range of changing conditions encoun-
tered at the intestine would require a high-level of
functional plasticity compared to other tissues. This the-
ory is supported by the fact that a higher number of
genes are specifically expressed in the gut mucosa than
that in the heart, liver, kidney, and other organs that
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carry out a narrower range of functions [25–27]. Tran-
scriptional responses of the intestinal mucosa to individ-
ual stimuli or perturbations have been documented
widely in literature [15, 28, 29]. However, little is known
about which key biological pathways provide functional
plasticity in the intestinal mucosa. Interest in under-
standing this plasticity stems from the current trend to
develop (dietary) interventions to optimise gut health
and reduce the risk of disease.
Therefore, it is essential to investigate the functional

plasticity of mucosal tissues at the functional genomic
level in terms of pathways. Such an approach may aid to
identify key sets of biosynthetic and signalling pathways
involved in the mucosal responses, but also to identify
the commonalities and differences in the expression of
pathways responding to various environmental and
physiological perturbations. To investigate this, we used
publicly available gene expression datasets generated
from mouse intestinal tissues exposed to orally adminis-
tered challenges. From the results of the analysis on
these datasets we identified the pathway “Regulation of
Complement Cascade” that appears to play an important
role in the functional plasticity of the intestinal epithelial
response to different nutritional, microbial, and chemical
challenges.
The complement system consists of several inactive

pre-proteins produced in the liver that circulate in the
blood which are crucial for efficient clearance of invad-
ing organisms. It is part of the innate immune system
and activation of the complement cascade plays a key
role in the opsonisation of micro-organisms to increase
phagocytosis by macrophages and neutrophils at the
sites of infection [30]. To avoid complement injury to
autologous tissues, complement activation is controlled
by a number of fluid-phase and cell surface proteins.
Given the importance of this pathway in the GI system
and in our high-level data integration we validated the
results of our analysis with an in vitro experiment on
mouse intestinal organoids. This experimental validation
allowed us to, i) validate our data driven experimental
design approach, ii) fulfil our aim of gaining more un-
derstanding of the functional plasticity of the GI tract.

Results
Classification of intestinal gene expression datasets
We identified 14 publicly available datasets meeting the
search criteria. We classified them into three broad stimu-
lation categories: Diet (7 experiments); Drug (3 experi-
ments); and Immune Challenge (4 experiments) based on
the type of intervention. Stimulations that were given as
part of the feed of the animal were classified as ‘Diet’.
Stimulation with a substance that is used as medication
was classified into the ‘Drug’ category. Any substance that
elicits a strong immune response was classified as an

‘Immune Challenge’. It could be argued that the DSS chal-
lenge belongs to the Drug category rather than Immune
Challenge category as it can be used as a drug. However,
since the effects of DSS likely result from a primary epi-
thelial damage leading to the translocation of bacterial an-
tigens, here we have chosen to classify it as an Immune
Challenge.
These 14 experiments comprised of 37 experimental

conditions (Additional file 1: Table S1), where a condition
is defined as a unique combination of an inbred mouse
strain, a specific intervention and an intestinal tissue sam-
pled at a certain time point, as depicted in Fig. 1.

Significant pathway results for all the datasets
In order to identify pathways specifically regulated by
the challenges we used a modified version of the Cen-
trality based Pathway Analysis (CePa) algorithm [31] and
the ‘in-reach’ and ‘out-reach’ centrality options. Each
analysis was performed on a single comparison, where a
comparison is made between a stimulated condition ver-
sus the corresponding control in that experiment. We
used the Reactome database [32] for the pathway infor-
mation, which is arranged heirarchically from ‘root’
pathways (very broad), to more specific, ‘leaf’ pathways.
We only work with the leaf pathways for the pathway
analysis.
For all 37 conditions analysed, 710 pathways were sig-

nificantly enriched, see Additional file 2: Table S2 for p-
values of these pathways. The majority of these pathways
(84%) were significant in both centrality measures
whereas about 11% were significant only in the ‘in-reach’
centrality and 5% significant in only the ‘out-reach’ cen-
trality. An overview of the pathway analysis results is
given in Additional file 4: Figure S1. This figure shows
that the responses are partially influenced by the tissue
that was sampled since the red points (large intestine)
mostly separate from the green points (small intestine).
The number of signifcantly regulated pathways for each
condition is highly variable, with the maximum being
377 from the experiment with Heme (Diet.Add.Heme.C)
and the minimum being 37 in the experiment where
20% of the energy in the diet came from fat (Diet.Fat.20.
P.SI). The average number of signifcantly regulated path-
ways is highest in the conditions belonging to the Diet
category with 132 pathways, the second highest is Im-
mune Challenge with 101 pathways followed by Drug
with 87 pathways on average.

Comparison of the significant pathways in the three
experimental challenge categories
There was a large overlap in the results between the
three categories (Fig. 2). In addition, there were several
pathways unique to each challenge category, the largest
number of pathways were identified in the Diet category,
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Fig. 1 Experimental datasets: The 37 conditions from 14 experiments (with 17 GEO accession numbers) used in this study are detailed in a timeline
based on the age of the mice. Mice are selected to be part of an experiment based on weight, hence their age can vary within a range. The stars
denote the start of the intervention, an empty star indicates the range of age when the intervention starts, when the age is not the same for all the
animals in the group. Triangles denote the end of the interventions, an empty triangle indicates the start of the range of age of the animals.
Challenges have been divided in three categories (colour coded): Diet, Drug and Immune Challenge. The names given for each dataset are
abbreviated to show the challenge category in the first part of the name, the tissue sampled at the end (SI: small intestine; C: colon) and the text in the
middle indicates the nature of challenge. Additional detailed explanations for the abbreviated condition names and the control conditions are given in
Additional file 1: Table S1
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which also had the largest number of experimental con-
ditions in our study. There is a large number (212) of
pathways that are shared among all challenge categories
(Fig. 2). These 212 pathways belong to 24 of the 27 root
pathways. The distribution of the 212 leaf pathways
among the 24 root pathways of Reactome is shown in
Table 1. The roots with the largest number of results are
Metabolism, Disease, and Signalling pathways, but the
proportion of common leaf pathways is similar to the
proportion of all the leaf pathways in the roots in the
Reactome database.

Regulation of pathways shared by the challenge
categories
In order to investigate the most differently regulated
pathways among the three conditions, the 212 common
pathways were ranked based on a Difference Score. The
Difference Score was calculated based on the mean node
scores of the pathway nodes. The node scores of the
pathway are a t-statistic which is a differential value be-
tween the experimental condition and the control. A
mean of the node scores in the pathway under experi-
mental conditions within one challenge category was cal-
culated to end up with three scores for a pathway. The
sum of the difference between the three mean values, the

Difference Score was used to rank the list of common
pathways. Table 2 shows the top 10 pathways ranked by
this method and their corresponding Difference Scores.
The largest differences between the three challenge cat-

egories and gene expression of nodes were found in the
innate immunity pathway, ‘Regulation of Complement
Cascade’ (Fig. 3). All the genes in the Reactome pathway
‘Regulation of Complement Cascade’, with their differen-
tial expression values, are provided in Additional file 3:
Table S3. The Regulation of Complement Cascade path-
way was significantly regulated in 17 conditions in vivo
(11 Diet, 3 of 7 Drug and 3 out of 5 Immune Challenge
conditions). In the Diet conditions containing added fat,
the complement factor genes mentioned above were also
increased in expression (Fig. 3, Additional file 3: Table
S3). In the Drug category, penicillin (Drug.Penicillin.SI),
expression of the complement pathway genes highlighted
in Fig. 3 were unaffected or mostly down-regulated
whereas some were upregulated by the herbal drug condi-
tions (Drug.HerbalDrug.SI, Drug.HerbalDrug.SPF.C). The
biggest change was in the Immune Challenge category in-
fection, where Salmonella upregulated the complement
factors C4, C2, C3. These complement factors are re-
quired for activation of the complement cascade via the
classical pathway and mannose lectin pathway (Fig. 3). C3

Fig. 2 Number of leaf pathways enriched in differentially expressed genes in the three challenge categories. The three circles are indicative of the
significant leaf pathways in the datasets belonging to one of the three challenge categories Diet, Drug, or Immune Challenge. The 212 common
pathways of all the three classes are indicated in the centre
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Table 1 The 24 root pathways common to the three challenge categories. The names of the root pathways are given in the first
column. The second column shows the number of leaf pathways in a particular root and this number is shown as a percentage of
all the leaf pathways in the root pathway in the database

Root pathways Common Leaf pathways Ratio of common leaf pathways in the root pathway

Metabolism 54 22%

Disease 53 24%

Signalling Pathways 47 32%

Immune System 29 33%

Cell Cycle 20 30%

Gene Expression 13 18%

Hemostasis 11 44%

Programmed Cell Death 7 26%

Transcription 6 29%

Metabolism of proteins 4 8%

Chromatin organization 3 60%

Circadian Clock 3 100%

Developmental Biology 2 5%

DNA Replication 2 18%

Extracellular matrix organization 2 18%

Membrane Trafficking 2 18%

Transmembrane transport of small molecules 2 6%

Binding and Uptake of Ligands by Scavenger Receptors 1 20%

Cell-Cell communication 1 13%

Cellular responses to stress 1 9%

DNA Repair 1 4%

Muscle contraction 1 50%

Organelle biogenesis and maintenance 1 9%

Post-Elongation Processing of the Transcript 1 25%

Table 2 Top 10 pathways with the most difference in expression between the three perturbation classes. The second column
shows the specific experimental conditions in the perturbation classes that were most different. The Difference Score was calculated
using the t-values of the pathway nodes in the given conditions

Pathway Name Most different conditions Difference Score

Regulation of Complement cascade Diet.Add.Probio.BALBc.C - Drug.HerbalDrug.SPF.C - IC.STyph.4
day.SB1117.C

21.07

APC/C:Cdc20 mediated degradation of Cyclin B Diet.Add.Heme.C - Drug.Antibiotics.C - IC.GDuodenalis.SI 20.07

Cdc20:Phospho-APC/C mediated degradation of Cyclin A Diet.Add.Heme.C - Drug.Antibiotics.C - IC.Colitis.C 17.92

Inactivation of APC/C via direct inhibition of the APC/C complex Diet.Add.Heme.C - Drug.Antibiotics.C - IC.Colitis.C 17.42

Formation of the HIV-1 Early Elongation Complex Diet.Add.Probio.C57BL6.C - Drug.Antibiotics.C - IC.STyph.4
day.SL1344.C

16.96

Formation of HIV elongation complex in the absence of HIV Tat Diet.Add.Probio.C57BL6.C - Drug.Antibiotics.C - IC.STyph.4
day.SL1344.C

16.09

Amplification of signal from unattached kinetochores via a MAD2
inhibitory signal

Diet.Add.Heme.C - Drug.HerbalDrug.C - IC.Colitis.C 16.07

Signal regulatory protein (SIRP) family interactions Diet.Fat.30.M.SI - Drug.Penicillin.SI - IC.STyph.4 day.SB1117.C 15.87

Termination of O-glycan biosynthesis Diet.Add.Heme.C - Drug.HerbalDrug.C - IC.STyph.4 day.SB1117.C 14.73

Formation of HIV-1 elongation complex containing HIV-1 Tat Diet.Add.Probio.C57BL6.C - Drug.Antibiotics.C - IC.STyph.4
day.SL1344.C

13.87

Benis et al. BMC Genomics         (2019) 20:1028 Page 5 of 16

http://ic.gduodenalis.si
http://diet.fat.30.m.si
http://drug.penicillin.si


Fig. 3 (See legend on next page.)
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and factor B which are required for activation of the alter-
native pathway were also upregulated by some conditions
in the Immune Challenge category (Fig. 3). Although C5
expression was only moderately upregulated by some of
the Immune Challenge conditions, C6 was strongly upreg-
ulated. The other complement factors forming the
membrane attack complex (MAC) on the surface of mi-
croorganisms were not strongly regulated under any of
the conditions (Additional file 3: Table S3). The host pro-
tection factors (Fig. 3) CD55, CD46 and factor H, which
are important for protection of host cell membranes when
complement activation is triggered by microbes, displayed
similar expression patterns as the complement factors
(Fig. 3, Additional file 3: Table S3).

Response of representative stimulants of the three
challenge categories in mice intestinal organoids
To investigate the regulation of genes in the pathway
‘Regulation of Complement Cascade’ under similar con-
ditions as tested in vivo, we performed experiments on
adult stem cell derived ileal organoids from mouse. The
organoids contained all the main epithelial cell lineages
found in the tissue of origin, including comprehensive
components of the complement cascade [34–36].
As defined stimuli, we used TNFα, an inflammatory

cytokine-induced by infection or activation of inflamma-
tory pathways, bacterial flagellin, an agonist of an innate
immune receptor Toll Like Receptor 5 (TLR5) and a
pharmacological agonist of PPARα a transcription factor
and a major regulator of lipid metabolism.
The inflammatory cytokine TNFα which is induced by

infection (e.g. with pathogenic Salmonella) induces ex-
pression of all complement related genes except C5,
C8GH and CR2 (Fig. 4). In contrast, none of the genes
were significantly altered in expression by incubation
with flagellin, despite its ability to activate TLR5 signal-
ling on HEK reporter cells expression TLR (data not
shown). None of the genes related to the Regulation of
Complement Cascade pathway were altered by the
PPARα agonist. Instead, we observed the PPARα agonist
significantly altered the expression of host receptors and
CFI which are involved in protection of the host from
complement activation.

Discussion
By integrating the results of experiments in which intes-
tinal homeostasis was perturbed by completely different
challenges, including probiotics, antibiotics, infectious
agents, and major dietary components, we were able to
investigate the plasticity of the GI tissue in terms of en-
gaging various (biological) pathways. To the best of our
knowledge, this type of study, has not yet been
performed on this scale, focusing on one tissue and dif-
ferent types of challenges. By grouping the different
challenge conditions in categories comprising drugs,
dietary ingredients or potentially inflammatory agents,
we grouped the responses of the mucosal tissue to facili-
tate broader comparisons. The results revealed pathways
which are regulated in all categories. In addition, we
observed large differences in the expression profiles of
pathway genes between different exposure conditions, in
some cases, irrespective of the challenge category. By
focussing on the commonly regulated pathways, we
show that the gut mucosa employs similar pathway sys-
tems. However, these pathway systems are used in differ-
ent combinations and with different intra-pathway gene
expression profiles, to respond to different exposures.

High-level data integration and pathway level analysis
The most important criteria for dataset selection was the
age at which the mice were sampled, because the muco-
sal immune system and intestinal microbiota of mam-
mals is known to change dramatically around weaning
[37]. This holds true for mice [38, 39], therefore we only
included datasets where the mice were sampled two or
more weeks after weaning. The inclusion criteria pro-
vided datasets that are comparable, but they still differed
in many aspects such as the use of microarray platforms,
in sampling of the tissue and in the control conditions.
By using controls within an experiment, we expect to
only eliminate differences caused by platforms and retain
biological influences like the type of tissue and the per-
turbation. Therefore, we used a high-level data integra-
tion method that started with the identification of
differently expressed pathways as detected within an in-
dividual experiment and/or experimental condition.
Before the pathway analysis the discriminating factor be-
tween the datasets was the platform in which the data

(See figure on previous page.)
Fig. 3 The three complement pathways leading to enhanced phagocytosis of microorganisms. The binding of C3b to a receptor expressed on
the surface of phagocytes and formation of the C5 convertase which generates chemotactic factors C5a and C3a, and the membrane attack
complex for lysis of microbial membranes are depicted in the figure. Names of enzymatic products or complexes are shown. Common gene
names are shown in boxes and are shaded in red when positively regulated in the datasets included in this study and green when negatively
regulated. Each panel shows the complement pathway; however, it is superimposed with the pathway gene expression measurements for three
different experimental conditions, one from each challenge category. Panel a represents the expression of the genes in the condition Diet.Fat.45.
P.SI, panel b, Drug.Penicillin.SI and panel c, IC.STyph.4 day.SL1344.C. The legend shows the range of differential regulation. Complement-mediated
defence mechanisms are shown in grey boxes. Modified from Microbes Online by Srijana Khanal [33]
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Fig. 4 (See legend on next page.)
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was measured (data not shown). After the high-level
data integration, the main differences among the data-
sets is the sampled tissue and the type of perturbation,
see Additional file 4: Figure S1.
We used the CePa algorithm that considers a pathway’s

topology by using different network centrality measures.
Based on the biological information behind the pathways,
we decided to use two centrality calculations, ‘In-reach’
and ‘Out-reach’ to capture regulation of pathways down-
stream (important for signalling pathways) and up-stream
(for metabolic pathways) respectively.
Most of the results were significant in both the cen-

trality calculations irrespective of the type of pathway.
This apparent indifference to topology is also observed
by Bayerlova et al. [40] in a different pathway database
using a variety of algorithms. In the aforementioned
study, among the algorithms that used pathway top-
ology, the CePa GSA algorithm performed consistently
well. But, as also discussed in Khatri et al. [41], in order
to make the most use of pathway topology it is import-
ant to be able to better annotate the edges between
pathway nodes.

Several pathways were regulated by all three challenge
categories
The results of the integrated pathway analysis show a not-
able overlap in the pathway response between the three
challenge categories. The Diet category has the highest
number of leaf pathway results, and also the highest num-
ber of experimental conditions. Surprisingly, most of the
results from Drug and Immune Challenges were also
shared by the Diet class. The results demonstrate that
there is a group of pathways that are commonly regulated
by interventions which perturb homeostasis. These com-
mon pathways contribute to a major extent towards the
capability of the intestinal mucosa to display a high-level
of functional plasticity. Most of the transcriptomics data
used in this study came from intestinal scrapings which is
greatly enriched for different types of epithelial cells
involved in innate immunity and cross-talk with the
immune cells in the lamina propria [2]. The different
functions of these epithelial cells contribute to the
functional plasticity of the epithelium. The results of this
study revealed another layer of plasticity which is based
on the specific use of a common set of pathways. These
common pathways are significantly differentially expressed

compared to controls in at least one experimental condi-
tion in each category. Simplifying the regulatory output of
a whole pathway is difficult due to issues like up-
regulation of the expression of inhibitory molecules.

The pathway regulation of complement Cascade is
regulated by multiple intestinal challenges
One of the 212 common pathways which responds dif-
ferently to the challenge categories is the ‘Regulation of
Complement Cascade’. This pathway showed the largest
difference in node expression profiles between the three
challenge categories as shown in Table 2. The local pro-
duction of complement factors must be important in in-
testinal homeostasis as the pathway shows maximum
difference between the challenge categories and is regu-
lated in several experimental conditions. Although the
complement cascade is mentioned in two of the experi-
ments used in this study [42, 43], the effects of the ex-
perimental conditions on the complement cascade were
not explored in detail.
Complement factors involved in complement activa-

tion by one of three pathways are produced in the liver
and enter the circulation. Complement factors reach tis-
sue sites of infection through acute inflammation which
results in the exudation of fluid and plasma proteins and
an emigration of leukocytes into the extravascular com-
partment. Our observation that key complement factors
involved in the complement activation pathways (e.g.
C2, C3, C4, factor B), complement control and host
protection (CD55, CD46, CFI, CFH), are increased in
expression by epithelial cells exposed to infectious chal-
lenge, suggests that local complement production may
be needed in the intestine as an early defence mechan-
ism against encounters with microorganisms due to a
dysfunctional barrier or infection. This idea has been
proposed before [44, 45] especially with regards to in-
flammatory conditions and here we have explored this
hypothesis in our dataset. This hypothesis was supported
by our finding that transcription of complement system
genes was regulated in mouse organoids in response to
agonists of different signalling pathways. Only comple-
ment factors involved in the early stages of pathway
activation and opsonization were strongly upregulated
under inflammatory challenge conditions. Activation of
the complement pathways in the mucosal tissues would
lead to early opsonization of microorganisms and

(See figure on previous page.)
Fig. 4 Expression of 10 chosen genes from the ‘Regulation of Complement Cascade’ pathways with significance calculated with ANOVA. Each
graph contains information on different genes, the x-axis contains information on the treatment of the organoids and the y-axis has the fold
change of the control genes. Data were analysed using Prism statistical software (v5.0, Graphpad, San Diego, US), measured for normality using
the Kolmogorov-Smirnov test, and represented as Box and Whisker plots. A t-statistic test was performed on the RT-qPCR results of the 10 genes
using the same methods as on the nodes in the gene set pathway analysis of CePa. All data were considered significantly different from the
Blank (indicated in grey) when P < alpha (0.05) and indicated with * (P < 0.05 = *, P < 0.01 = **, P < 0.001 = ***)
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production of chemokines such as C5a to attract im-
mune cells. The observed upregulation of host factors
involved in protection of autologous cell membranes
from complement damage is also compatible with the
hypothesis that complement activation occurs in the
mucosal tissue. The upregulation of C2, C3, C4, and fac-
tor B but not C5 and the complement factors (C6-C9)
required for generation of the membrane attack complex
(MAC), which is an important effector protein, is con-
sistent with other literature describing complement
factor expression in colorectal carcinoma cell lines stim-
ulated with various cytokines [46, 47]. C3 and C4 tran-
scripts have been localised to intestinal crypts in
biopsies from Crohn’s patients [48]. This is consistent
with the notion that epithelial cells can be induced to
express complement factors needed for opsonisation of
invading bacteria, but not cell lysis.
In the Diet category of challenges high fat diets

strongly upregulated transcription of complement path-
way genes, which may be due to a low-grade inflamma-
tion and a hyperpermeable gut [49, 50]. Interestingly,
depletion of the microbiota with penicillin reduced path-
way expression, suggesting that the microbiota contrib-
ute to ‘tonic’ stimulation of the complement related
pathways via stimulation of innate immunity.
To confirm that the intestinal epithelium could ex-

press complement factors in response to signalling path-
ways targeted by the dietary challenges, we stimulated
small intestinal crypt derived mouse organoids with
TNFα, flagellin, an agonist of PPARα, or culture medium
as a control and compared the relative transcript abun-
dance of selected complement pathway genes by reverse
transcription polymerase chain reaction (RT-PCR).
TNFα is known to be induced by invasive infection by
enteric infection with Salmonella [51], which was used
in the Immune Challenge category [52]. Furthermore,
receptors for TNFα are present on intestinal cells and
signal in response to TNFα [53]. TLR5 was chosen be-
cause flagellin was orally administered in one of the
studies in immune challenge category and PPARα agon-
ist was selected because it was administered in one of
the studies in the diet category with the aim of altering
lipid metabolism [42]. One of the characteristics of
inflammation is compromised barrier function, leading
to a cascade of events in the lamina propria, e.g. TNFα
secretion by invading immune cells, or bacterial frag-
ment translocation [2]. As some TLR receptors may only
be active or signal via the basolateral membrane of
enterocytes [2, 54] we stimulated intact organoids.
Genes to be observed were selected based on biological
significance and fluctuation in the datasets that were
analysed and RT-qPCR was performed on those mice
genes (written in italics to differentiate from human
genes). Stimulation with the inflammatory cytokine

TNFα increased transcription of complement factors C2,
C3 and regulatory proteins Cfi, Cd46 and Cd55, whereas
expression of C5, C8 and Cfh was not significantly chan-
ged and Cd59 was significantly down-regulated. The
agonist of PPARα significantly up-regulated transcrip-
tion of regulatory proteins Cd55, Cr2, Cd46, and Cfi and
significantly down-regulated expression of Cd59. Sur-
prisingly, flagellin (which was shown to activate TLR5 in
an intestinal cancer cell line [55]) did not significantly
alter expression of any of these genes. The reasons for
this are unclear but may be due to aberrant expression
or regulation of TLR in intestinal cancer cells which are
known to display biological variations such as aneu-
ploidy, chromosome rearrangements or mutations [56].
It has also been proposed that TLR5 signalling is tightly
controlled in epithelial cells to avoid chronic inflamma-
tory responses to bacterial MAMPs from the intestinal
lumen, and that expression of this receptor is exclusively
present on Paneth cells in the small intestine [54]. Hav-
ing TLR5 exclusively expressed in Paneth cells could ex-
plain the low responsiveness to flagellin, since this cell
type is abundant at low levels in organoids [57]. Interest-
ingly, activation of the PPARα pathway also increased
expression of protective factors Cd55, Cd46, Cfi and Cr2
which allows the complement system to play a role in B
cell activation and maturation. This links PPARα to
regulation of complement cascade in the gut and the
effects of high fat diets on this pathway in vivo.
CD55 and CD46 have other functions, besides their

role in protection of host cells from complement activa-
tion which may be relevant for intestinal homeostasis.
CD55 binds to the neutrophil receptor CD97 expressed
on neutrophils to promote neutrophil migration through
the epithelium [58]. Binding of antibodies to CD46 on
Caco-2 cells was shown to induce intracellular signalling
and improved cell proliferation and wound healing [59].

Conclusions
In conclusion, high-level data integration of transcripto-
mics datasets from intestinal tissue from in vivo experi-
ments was a valuable approach to identify common
pathways associated with functional plasticity and intes-
tinal homeostasis. The identified pathways are regulated
in different combinations to generate different physio-
logical responses, or genes within a pathway are differen-
tially regulated contributing further to the plasticity. The
“Regulation of Complement Cascade” pathway is one of
many pathways regulated by multiple intestinal chal-
lenges suggesting it is an important mechanism in the
periphery of the intestine, which might have poor access
to circulating complement components from the blood.
Epithelial expression of complement factors involved in
opsonisation and chemotaxis of host phagocytes, but not
formation of the MAC complex, indicates a primary
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function in opsonisation of microbes and chemotaxis of
host immune cells. Coincident with the increased intes-
tinal expression of complement factors is the expression
of host factors involved in complement control and pro-
tection such as CD55 and CD46 which have secondary
functions in innate immunity and wound healing.

Methods
Datasets
The R tool GEOmetadb [60] was used to search Gene
Expression Omnibus (GEO) [57, 61] for publicly avail-
able datasets generated from intestinal samples of mice.
We selected 14 transcriptomics experiments (17 GEO
datasets) from the 450 available (as of 07-07-2015)
which analysed any intestinal tissue section from an
intervention in weaned mice. All selected experiments
used single channel microarrays with at least 3 biological
replicates and were published on GEO between 2006
and 2014. Three of the datasets were obtained using Illu-
mina microarray platforms whereas the others were ob-
tained using versions of the Affymetrix platform. Most
experimental data were obtained from inbred C57BL6J
mice, but there were two experiments that used BALB/c
mice, one that used the 129S1/svlmj mouse strain and
another that used IQI mice. Eleven experiments were
performed on female mice and three experiments on
male mice.
There were two experiments where the fat content of

the diet was increased by reducing the carbohydrate por-
tion of the diet [11, 62]. The former experiment pro-
vided three different levels of fat (20, 30 and 45% of total
energy in the diet) and performed transcriptomics on
three sections of the small intestine. The latter experi-
ment provided 60% fat as total energy in the diet and
measured gene expression in RNA isolated from two
halves of the small intestine. One experiment tested five
different fibres which were substituted for part of the
corn starch in the diet and the transcriptomics data was
generated from the colon [63]. The rest of the dietary in-
terventions were additives or supplements to the mouse
diet. In one experiment, dietary heme was added to a
high fat diet and the response was measured in the colon
[64]. In another experiment quercetin was added to the
standard diet and the response was measured in two
parts of the small intestine (jejunum and ileum), as well
as in the colon [65]. Another experiment added a syn-
thetic PPARα agonist to the diet and a microarray ana-
lysis was performed on the small intestine [42]. One
experiment tested a probiotic on two strains of mice and
two sections of the intestine (small and large intestine)
[66]. There are three experiments where a drug was ad-
ministered to the animals. In one of these experiments a
herbal drug was tested on wild-type and specific patho-
gen free mice, and the response measured in the small

intestine and colon [43]. The other 2 drug experiments
involved administration of antibiotics. One study utilised
a mix of several antibiotics to strongly deplete the abun-
dance of gut bacteria, and investigated gene expression
in the colon [67]. In the other experiment with antibi-
otics, a low dose of penicillin was administered daily to
the animals from an early age and the diet was also
changed before measuring the response in the small in-
testine [68]. There were 2 challenge experiments, one
with Salmonella Typhimurium [52], where the colon
was sampled andanother involved the parasite Giardia
duodenalis [69] where the small intestine was sampled.
The effect of flagellin from Salmonella enterica serovar
Typhimurium [70] on the intestinal immune system and
the severity of DSS-induced colitis was investigated [71]
in the colon. More details on the experimental condi-
tions and the control conditions can also be found in
Additional file 1: Table S1.

Data pre-processing
Using GEOQuery [72], we downloaded normalised data-
sets of preselected experiments from GEO. In each ex-
periment, the normalization was performed with one of
the following methods, GCRMA, RMA, MAS5 or quan-
tile normalization. Our high-level integration approach
does not require uniform normalization, so in each case
we preferred the method chosen by the authors of the
original study. The probes were mapped to mouse
Entrez identifiers using the annotation files from the
platform that was used for microarray analysis. After a
quality check using Principle Component Analysis plots,
these mice gene identifiers were then mapped to their
human homologs using the NCBI HomoloGene database
[RRID:SCR_002924]. Code snippets for these steps can
be found on the GitHub page https://github.com/nirupa-
maBenis/PathwayLevelDataIntegration.

Pathway database
The analysis of all the datasets was performed using path-
ways from the Reactome database [RRID:SCR_003485], a
freely accessible and a manually curated database available
in different formats. Pathways from Reactome were down-
loaded in the BioPAX [RRID:SCR_009881] (Biological
Pathway Exchange) [73] format (version 51) from the offi-
cial website. These pathways were then converted to a
pathway catalogue object in R that can be used by the
pathway analysis algorithm. This was accomplished by
using the pathway2Graph function from the R package
rBiopaxParser [RRID:SCR_002744] [74, 75].
All pathways in the Reactome database are arranged in

a hierarchy, larger ‘root’ pathways consist of more and
more specific pathways, ending in several ‘leaf’ pathways.
This hierarchy is depicted in a simplified cartoon in the
inset of Additional file 5: Figure S2. The main image in
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Additional file 5: Figure S2 shows a network of all the
root pathways in Reactome version 51. These 27 root
pathways contain 1639 pathways within their hierarchy,
of which 950 are leaf pathways.

Pathway analysis
We used a modified version of the algorithm CePa (Cen-
trality based Pathway analysis), which uses pathways as
networks where the nodes in a pathway could be small
molecules (compounds), macro-molecules (proteins or
RNA) or complexes (more than one protein). The topo-
logical information of the pathway is used to assign
weights to each node using centralities. The user can
choose between one of four centrality measures, in-degree
(number of edges that are directed towards the node),
out-degree (number of edges that are directed outwards
from the node), in-reach (longest path that brings infor-
mation to the node) and out-reach (longest path that di-
rects out of the node), with another option of giving equal
weight to all nodes. This centrality information is used
along with the expression data to give a list of significantly
enriched pathways for given conditions vs their controls.
There are two methods of using the expression data in the
CePa package, Over-Representation Analysis (ORA) and
Gene Set Analysis (GSA). ORA usually takes a list of
differentially expressed genes which could be ranked with
p-values or fold changes. GSA takes the entire matrix of
expression values to find enriched pathways and this is the
method we chose to use.
The gene expression data is mapped to the nodes of

the pathways, when the node is a protein the expres-
sion value of the corresponding gene is used as such.
When the node is a complex, the largest component
from a Principle Component Analysis of the expres-
sion values of all the corresponding proteins is
assigned as the node expression value. Subsequently,
these expression values are inputted in a t-statistic to

obtain a differential expression value for each node,
which can be positive or negative based on the up- or
down-regulation of that protein. This differential node
value is multiplied with the centrality-based weight of
the node to obtain a final node value. This calculation
is performed for each of the nodes in the pathway and
all these values are averaged to obtain a pathway level
score. The pathway level score is then tested for sig-
nificance by substituting random expression values in
the same pathway calculations and comparing the
obtained value with the original dataset and the value
obtained with the randomized data. The fraction of
the iterations on which a higher score is obtained with
the randomized data is used to represent the p-value.
This p-value calculation was modified from the ori-
ginal CePa function which randomizes the replicates
of the tested conditions. As we work with a minimum
of three samples per condition, we modified this cal-
culation to be able to handle smaller sample sizes. The
original algorithm randomized the data across samples
in order to calculate the significance of a pathway
score. We decided to randomize the expression values by
genes so that there is a larger chance of the values being
truly random and thus without a biological signal. Because
the hierarchical nature of the pathway database implies
dependence between the pathways, we decided not to per-
form a multiple testing correction.
We weighted the nodes with the in-reach and out-

reach centrality calculations, because they assign higher
weights to the nodes down-stream and up-stream of the
pathway respectively. In this way, we can capture signal-
ling pathways, where the effectors are more likely to be
down-stream of the pathway. However, we did not rule
out the metabolic pathways where the enzymes are
generally up-stream in a pathway. The threshold of the
p-values was set at 0.01 to compensate for the lack of
multiple testing correction.

Table 3 Primers used for RT-qPCR. The information on the primers used to quantify 10 genes is given in each row along with the
publication from which this sequence was obtained

Gene Forward Reverse AT (°C) Amplicon (bp) Ref

C2 CTCATCCGCGTTTACTCCAT TGTTCTGTTCGATGCTCAGG 60 178 [79]

C3 AGCAGGTCATCAAGTCAGGC GATGTAGCTGGTGTTGGGCT 60 167 [79]

C5 AGGGTACTTTGCCTGCTGAA TGTGAAGGTGCTCTTGGATG 60 173 [79]

Cfh CGTGAATGTGGTGCAGATGGG AGAATTTCCACACATCGTGGCT 60 248 [79]

Cfi TTCCACTGGGTGTTCGTGAC TAAAGGCACACTCCGCCAAA 60 126 [79]

Cd46 CCAGGGCCAGATAAGTTTTC TATTTCGCCAGCTCCTGATA 60 153 [79]

Cd55 CTCTGTTGCTGCTGTCCC CGAATAATATGCCGGTTG 60 477 [80]

Cd59 TAAGTGAGTTCCTGGCAACC AGGGCCTGTGAAGATTATGA 60 152 [79]

Cr2 CCTGCTCCTCTCTGTAAACT GATCTGACTGCTTCCACTCA 60 162 [79]

C8g CTGGCTCCTTGTGGCTGT CGAAACTCTGGTAGTCGGTCTC 60 257 Author

Benis et al. BMC Genomics         (2019) 20:1028 Page 12 of 16



Intestinal organoid cultures
Three dimensional (3-D) crypt derived murine intestinal
organoids were grown as described in literature [34, 76–
78]. Briefly, a 2 cm duodenal section was opened longitu-
dinally and washed in ice-cold phosphate-buffered saline
solution (PBS). After scraping excess villi, the tissue was
transferred to PBS containing 2.5 mM EDTA and incu-
bated for 30 min. Following incubation, the sections
were washed with PBS and remaining residue was passed
on a 70 μm cell strainer, pelleted at 300 x g for 5 min,
and suspended in matrigel basement membrane (Growth
factor reduced, Corning) at a density of 50–100 crypts
per 50 μl. After inversed polymerization at 37 °C for >
10min, 600 μl basal culture medium (DMEM/F12) was
added, enriched with mouse EGF, Hepes 1M (Invitro-
gen), N-acetylcysteine (Sigma), B-27 (Thermo-Fisher),
Noggin, and R-spondin. The culture was passaged 1:4
every 7 days by mechanical disruption and re-suspension
in fresh Matrigel. All experiments were performed after
2 passages of the organoid cultures.

Stimulation of organoids and reverse transcriptase-
quantitative PCR
The 3-D organoids were stimulated with TNFα (10 ng/
ml), a PPARα agonist (WY14643 0.1% v/v), and flagellin
(200 ng/ml) for 6 h before total RNA was extracted with
the Qiagen mini-kit according to manufacturer’s instruc-
tions along with a 15min DNAse step. Purity and integrity
measurements were performed on a DS-11 spectropho-
tometer (DeNovix) and 1 μg total RNA was reverse tran-
scribed into cDNA using a QScript kit (Quantabio).
Quantification of gene expression (RT-qPCR) was per-
formed using a Rotor-gene Q2 plex RT-cycler (Qiagen) on
primers specified in Table 3 with the rotor-gene SYBR
green PCR kit, also from Qiagen. These genes were se-
lected based on their representative contribution to the
pathway ‘Regulation of Complement Cascade’. Relative
expression levels were calculated following methods
described in [81] using individual amplification values,
with 18S and β-Actin as endogenous control genes for
normalization.
Untreated 3-D organoids were used as control to obtain

relative gene expression values of the 10 chosen comple-
ment pathway genes when stimulated by the three treat-
ments. Genes encoding C3 and C5 were selected as they
are key factors in the three complement activation path-
ways. Genes encoding CD46, CD55 and CD59 were
chosen because they are involved in protection of host
membranes when complement pathway is activated. The
other five genes (C8GH, CFI, CFH, CR1, and C2) were
chosen because their expression varied substantially under
the 17 experimental conditions where the ‘Regulation of
Complement Cascade’ pathway was significantly affected.
Complement Factor H and Factor I are involved in the

regulation of complement activation, C2 is a component
required for activation of the classical and alternate path-
ways. The murine CR2 contains 25 exons; a common first
exon is spliced to exon 2 and to exon 9 in transcripts
encoding CR1 and CR2 which encode receptors binding
complement complexes on host immune cells.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-019-6390-x.

Additional file 1: Table S1. Description of the 37 conditions. This table
describes the abbreviated names of experimental conditions as used in
the paper and the control conditions in each of the experiments.

Additional file 2: Table S2. Significant pathways with p-values in each
experimental condition both centralities. This table has the p-values of all
the significant leaf pathways in the 37 experimental conditions in both
the in-reach and out-reach centrality calculations. If the p-value of the
pathway was above the threshold of 0.01 an empty space is shown in
the table. The p-values of at least one of the centrality calculations have
to be lower than the threshold.

Additional file 3: Table S3. Differential expression of genes in
“Regulation of Complement Cascade” pathway. This table contains the
differential gene expression values of 24 genes in 17 experimental
conditions. The differential values were obtained with a T test of the
experimental condition vs the control in that experiment.

Additional file 4: Figure S1. PCA of all the significant pathways over
the experimental conditions. Green points represent p-values from the
pathway analysis from the small intestine and the red ones from the
large intestine. Circles represent experimental conditions from the Diet
category, the triangles are from the Drug category and squares from the
Immune Challenge category.

Additional file 5: Figure S2. Network of Reactome root pathway. The
nodes in this network represent the 27 root pathways as present in
Reactome v51 and the edges indicate the ‘leaf’ pathways shared by
connected root pathways. The thickness of the edges indicates the
number of leaf pathways shared by the nodes. The nodes are labelled
with the names of the root pathways and the number of enclosed leaf
pathways is given between brackets. The inset shows a simplified
example of root and leaf pathways, where the cartoon has one root
pathway with three leaf pathways.
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