529 research outputs found

    Basement-cover relations and internal structure of the Cape Smith klippe: A 1.9 Ga greenstone belt in northern Quebec, Canada

    Get PDF
    The Cape Smith Belt is a 380x60 km tectonic klippe composed of greenschistto amphibolite-grade mafic and komatiitic lava flows and fine-grained quartzose sediment, intruded by minor syn- to post-tectonic granitoids. Previously studied transects in areas of relatively high structural level show that the belt is constructed of seven or more north-dipping thrust sheets which verge toward the Superior Province (Archean) foreland in the south and away from an Archean basement massif (Kovik Antiform) external to the Trans-Hudson Orogen (Early Proterozoic) in the north. A field project (mapping and structural-stratigraphic-metamorphic studies) directed by MRS was begun in 1985 aimed at the structurally deeper levels of the belt and underlying basement, which are superby exposed in oblique cross-section (12 km minimum structural relief) at the west-plunging eastern end of the belt. Mapping now complete of the eastern end of the belt confirms that all of the metavolcanic and most of the metasedimentary rocks are allochthonous with respect to the Archean basement, and that the thrusts must have been rooted north of Kovik Antiform. The main findings follow

    A 3D insight on the catalytic nanostructuration of few-layer graphene

    Get PDF
    The catalytic cutting of few-layer graphene is nowadays a hot topic in materials research due to its potential applications in the catalysis field and the graphene nanoribbons fabrication. We show here a 3D analysis of the nanostructuration of few-layer graphene by iron-based nanoparticles under hydrogen flow. The nanoparticles located at the edges or attached to the steps on the FLG sheets create trenches and tunnels with orientations, lengths and morphologies defined by the crystallography and the topography of the carbon substrate. The cross-sectional analysis of the 3D volumes highlights the role of the active nanoparticle identity on the trench size and shape, with emphasis on the topographical stability of the basal planes within the resulting trenches and channels, no matter the obstacle encountered. The actual study gives a deep insight on the impact of nanoparticles morphology and support topography on the 3D character of nanostructures built up by catalytic cutting

    Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents

    Get PDF
    Iron oxide nanoparticles (IONPs) of low polydispersity were obtained through a simple polyol synthesis in high pressure and high temperature conditions. The control of the size and morphology of the nanoparticles was studied by varying the solvent used, the amount of iron precursor and the reaction time. Compared with conventional synthesis methods such as thermal decomposition or co-precipitation, this process yields nanoparticles with a narrow particle size distribution in a simple, reproducible and cost effective manner without the need for an inert atmosphere. For example, IONPs with a diameter of ca. 8 nm could be made in a reproducible manner and with good crystallinity as evidenced by X-ray diffraction analysis and high saturation magnetization value (84.5 emu g(-1)). The surface of the IONPs could be tailored post synthesis with two different ligands which provided functionality and stability in water and phosphate buffer saline (PBS). Their potential as a magnetic resonance imaging (MRI) contrast agent was confirmed as they exhibited high r1 and r2 relaxivities of 7.95 mM(-1) s(-1) and 185.58 mM(-1) s(-1) respectively at 1.4 T. Biocompatibility and viability of IONPs in primary human mesenchymal stem cells (hMSCs) was studied and confirmed

    Leptin-induced lipolysis opposes the tonic inhibition of endogenous adenosine in white adipocytes

    Get PDF
    The aim of the present study was to gain insight into the signaling pathway used by leptin to stimulate lipolysis. The lipolytic rate of white adipocytes from sex- and age-matched lean (+/+) and fa/fa rats was determined in the absence or presence of leptin together with a number of agents acting at different levels of the signaling cascade. Leptin did not modify FSK-, dbcAMP-, and IBMX-stimulated lipolysis. Lipolysis can also be maximally stimulated by lowering media adenosine levels with adenosine deaminase (ADA), i.e., in the ligand-free state. Although ADA produced near maximal lipolysis in adipocytes of lean animals, only half of the maximal lipolytic rate (50.9+/-3.2%) was achieved in fat cells from fa/fa rats (P=0.0034). In adipocytes from lean animals preincubated with ADA, leptin caused a concentration-related stimulation of lipolysis (P=0.0001). However, leptin had no effect on the lipolytic activity of adipocytes in the ligand-free state from fa/fa rats. The adenosine A1 receptor agonist CPA effectively inhibited basal lipolysis in both lean and obese adipocytes (P=0.0001 and P=0.0090, respectively). Leptin had no effect on the lipolytic rate of adipocytes isolated from fa/fa rats and preincubated with CPA. When adipocytes were incubated with the A1 receptor antagonist DPCPX, a significant increase in glycerol release was observed in fa/fa fat cells (P=0.009), whereas cells isolated from lean rats showed no differences to ADA-stimulated lipolysis. After pretreatment with PTX, which inactivates receptor-mediated Gi function, adipocytes of obese rats became as responsive to the stimulatory actions of ISO as cells from lean rats (P=0.0090 vs. ISO in fa/fa rats; P=0.2416 vs. lean rats, respectively). PTX treatment of lean cells, however, did not alter their response to this lipolytic agent. It can be concluded that the lipolytic effect of leptin is located at the adenylate cyclase/Gi proteins level and that leptin-induced lipolysis opposes the tonic inhibition of endogenous adenosine in white adipocytes

    A detailed investigation of the onion structure of exchanged coupled magnetic Fe3-dO4@CoFe2O4@Fe3-dO4 nanoparticles

    Get PDF
    Nanoparticles that combine several magnetic phases offer wide perspectives for cutting edge applications because of the high modularity of their magnetic properties. Besides the addition of the magnetic characteristics intrinsic to each phase, the interface that results from core-shell and, further, from onion structures leads to synergistic properties such as magnetic exchange coupling. Such a phenomenon is of high interest to overcome the superparamagnetic limit of iron oxide nanoparticles which hampers potential applications such as data storage or sensors. In this manuscript, we report on the design of nanoparticles with an onion-like structure which has been scarcely reported yet. These nanoparticles consist of a Fe3-dO4 core covered by a first shell of CoFe2O4 and a second shell of Fe3-dO4, e.g., a Fe3-dO4@CoFe2O4@Fe3-dO4 onion-like structure. They were synthesized through a multistep seed-mediated growth approach which consists consists in performing three successive thermal decomposition of metal complexes in a high-boiling-point solvent (about 300 °C). Although TEM micrographs clearly show the growth of each shell from the iron oxide core, core sizes and shell thicknesses markedly differ from what is suggested by the size increasing. We investigated very precisely the structure of nanoparticles in performing high resolution (scanning) TEM imaging and geometrical phase analysis (GPA). The chemical composition and spatial distribution of atoms were studied by electron energy loss spectroscopy (EELS) mapping and spectroscopy. The chemical environment and oxidation state of cations were investigated by 57Fe Mössbauer spectrometry, soft X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD). The combination of these techniques allowed us to estimate the increase of Fe2+ content in the iron oxide core of the core@shell structure and the increase of the cobalt ferrite shell thickness in the core@shell@shell one, whereas the iron oxide shell appears to be much thinner than expected. Thus, the modification of the chemical composition as well as the size of the Fe3-dO4 core and the thickness of the cobalt ferrite shell have a high impact on the magnetic properties. Furthermore, the growth of the iron oxide shell also markedly modifies the magnetic properties of the core-shell nanoparticles, thus demonstrating the high potential of onion-like nanoparticles to accurately tune the magnetic properties of nanoparticles according to the desired applications. © 2021 American Chemical Society

    Berenstein-Zelevinsky triangles, elementary couplings and fusion rules

    Full text link
    We present a general scheme for describing su(N)_k fusion rules in terms of elementary couplings, using Berenstein-Zelevinsky triangles. A fusion coupling is characterized by its corresponding tensor product coupling (i.e. its Berenstein-Zelevinsky triangle) and the threshold level at which it first appears. We show that a closed expression for this threshold level is encoded in the Berenstein-Zelevinsky triangle and an explicit method to calculate it is presented. In this way a complete solution of su(4)_k fusion rules is obtained.Comment: 14 page

    Prospective Study of Zinc Intake and Risk of Type 2 Diabetes in Women

    Get PDF
    OBJECTIVE: The aim of this study is to investigate the intake of zinc in relation to risk of type 2 diabetes in U.S. women. RESEARCH DESIGN AND METHODS: Dietary intakes of zinc and other nutrients were assessed and updated using a validated food frequency questionnaire from 1980 to 2002 among 82,297 women who were aged 33–60 years at baseline in 1980 and followed up to 2004 in the Nurses' Health Study. RESULTS: During the 24 years of follow-up, 6,030 incident cases of type 2 diabetes were ascertained. After adjustment of lifestyle and dietary risk factors, the relative risks (RRs) (95% CI) of type 2 diabetes comparing the highest with the lowest quintiles were 0.90 (0.82–0.99) (Ptrend = 0.04) for total zinc intake and 0.92 (0.84–1.00) (Ptrend = 0.009) for dietary zinc intake from food sources, respectively. We further found an inverse association for dietary zinc to heme iron ratio. After multivariate adjustment of covariates, the RRs (95% CI) across quintiles of this ratio were 1.0 (reference), 0.93 (0.86–1.01), 0.86 (0.79–0.94), 0.82 (0.75–0.90), and 0.72 (0.66–0.80), respectively (Ptrend < 0.0001). CONCLUSIONS: Higher zinc intake may be associated with a slightly lower risk of type 2 diabetes in women. More studies are warranted to confirm this association and to explore potential mechanisms

    A 3D insight on the catalytic nanostructuration of few-layer graphene

    Get PDF
    The catalytic cutting of few-layer graphene is nowadays a hot topic in materials research due to its potential applications in the catalysis field and the graphene nanoribbons fabrication. We show here a 3D analysis of the nanostructuration of few-layer graphene by iron-based nanoparticles under hydrogen flow. The nanoparticles located at the edges or attached to the steps on the FLG sheets create trenches and tunnels with orientations, lengths and morphologies defined by the crystallography and the topography of the carbon substrate. The cross-sectional analysis of the 3D volumes highlights the role of the active nanoparticle identity on the trench size and shape, with emphasis on the topographical stability of the basal planes within the resulting trenches and channels, no matter the obstacle encountered. The actual study gives a deep insight on the impact of nanoparticles morphology and support topography on the 3D character of nanostructures built up by catalytic cutting
    corecore