658 research outputs found
Особливості змісту права громадян на екологічну безпеку
В статье сделан анализ содержания права граждан на экологическую безопасность, определяется момент, с которого право на экологическую безопасность считается нарушенным
Particle detection experiment for Applications Technology Satellite 1 /ATS-1/ Final report
Applications technology satellite particle detection experiment for measuring energy spectra of earth magnetic fiel
Spin tune mapping as a novel tool to probe the spin dynamics in storage rings
Precision experiments, such as the search for electric dipole moments of
charged particles using storage rings, demand for an understanding of the spin
dynamics with unprecedented accuracy. The ultimate aim is to measure the
electric dipole moments with a sensitivity up to 15 orders in magnitude better
than the magnetic dipole moment of the stored particles. This formidable task
requires an understanding of the background to the signal of the electric
dipole from rotations of the spins in the spurious magnetic fields of a storage
ring. One of the observables, especially sensitive to the imperfection magnetic
fields in the ring is the angular orientation of stable spin axis. Up to now,
the stable spin axis has never been determined experimentally, and in addition,
the JEDI collaboration for the first time succeeded to quantify the background
signals that stem from false rotations of the magnetic dipole moments in the
horizontal and longitudinal imperfection magnetic fields of the storage ring.
To this end, we developed a new method based on the spin tune response of a
machine to artificially applied longitudinal magnetic fields. This novel
technique, called \textit{spin tune mapping}, emerges as a very powerful tool
to probe the spin dynamics in storage rings. The technique was experimentally
tested in 2014 at the cooler synchrotron COSY, and for the first time, the
angular orientation of the stable spin axis at two different locations in the
ring has been determined to an unprecedented accuracy of better than
rad.Comment: 32 pages, 15 figures, 7 table
Phase Measurement for Driven Spin Oscillations in a Storage Ring
This paper reports the first simultaneous measurement of the horizontal and
vertical components of the polarization vector in a storage ring under the
influence of a radio frequency (rf) solenoid. The experiments were performed at
the Cooler Synchrotron COSY in J\"ulich using a vector polarized, bunched
deuteron beam. Using the new spin feedback system, we
set the initial phase difference between the solenoid field and the precession
of the polarization vector to a predefined value. The feedback system was then
switched off, allowing the phase difference to change over time, and the
solenoid was switched on to rotate the polarization vector. We observed an
oscillation of the vertical polarization component and the phase difference.
The oscillations can be described using an analytical model. The results of
this experiment also apply to other rf devices with horizontal magnetic fields,
such as Wien filters. The precise manipulation of particle spins in storage
rings is a prerequisite for measuring the electric dipole moment (EDM) of
charged particles
Transverse-target-spin asymmetry in exclusive -meson electroproduction
Hard exclusive electroproduction of mesons is studied with the
HERMES spectrometer at the DESY laboratory by scattering 27.6 GeV positron and
electron beams off a transversely polarized hydrogen target. The amplitudes of
five azimuthal modulations of the single-spin asymmetry of the cross section
with respect to the transverse proton polarization are measured. They are
determined in the entire kinematic region as well as for two bins in photon
virtuality and momentum transfer to the nucleon. Also, a separation of
asymmetry amplitudes into longitudinal and transverse components is done. These
results are compared to a phenomenological model that includes the pion pole
contribution. Within this model, the data favor a positive
transition form factor.Comment: DESY Report 15-14
Evidence for a New Resonance from Polarized Neutron-Proton Scattering
Exclusive and kinematically complete high-statistics measurements of
quasifree polarized scattering have been performed in the energy
region of the narrow resonance structure with , 2380 MeV/ and 70 MeV observed recently in the
double-pionic fusion channels and .
The experiment was carried out with the WASA detector setup at COSY having a
polarized deuteron beam impinged on the hydrogen pellet target and utilizing
the quasifree process . That way the
analyzing power was measured over a large angular range. The obtained
angular distributions deviate systematically from the current SAID SP07
NN partial-wave solution. Incorporating the new data into the SAID
analysis produces a pole in the waves as expected from the
resonance hypothesis
Phase locking the spin precession in a storage ring
This letter reports the successful use of feedback from a spin polarization
measurement to the revolution frequency of a 0.97 GeV/ bunched and polarized
deuteron beam in the Cooler Synchrotron (COSY) storage ring in order to control
both the precession rate ( kHz) and the phase of the horizontal
polarization component. Real time synchronization with a radio frequency (rf)
solenoid made possible the rotation of the polarization out of the horizontal
plane, yielding a demonstration of the feedback method to manipulate the
polarization. In particular, the rotation rate shows a sinusoidal function of
the horizontal polarization phase (relative to the rf solenoid), which was
controlled to within a one standard deviation range of rad. The
minimum possible adjustment was 3.7 mHz out of a revolution frequency of 753
kHz, which changes the precession rate by 26 mrad/s. Such a capability meets a
requirement for the use of storage rings to look for an intrinsic electric
dipole moment of charged particles
Cross section ratio and angular distributions of the reaction p + d -> 3He + eta at 48.8 MeV and 59.8 MeV excess energy
We present new data for angular distributions and on the cross section ratio
of the p + d -> 3He + eta reaction at excess energies of Q = 48.8 MeV and Q =
59.8 MeV. The data have been obtained at the WASA-at-COSY experiment
(Forschungszentrum J\"ulich) using a proton beam and a deuterium pellet target.
While the shape of obtained angular distributions show only a slow variation
with the energy, the new results indicate a distinct and unexpected total cross
section fluctuation between Q = 20 MeV and Q = 60 MeV, which might indicate the
variation of the production mechanism within this energy interval.Comment: 9 pages, 9 figure
- …
