194 research outputs found

    Dealing with uncertainties in angles-only initial orbit determination

    Get PDF
    A method to deal with uncertainties in initial orbit determination (IOD) is presented. This is based on the use of Taylor differential algebra (DA) to nonlinearly map uncertainties from the observation space to the state space. When a minimum set of observations is available, DA is used to expand the solution of the IOD problem in Taylor series with respect to measurement errors. When more observations are available, high order inversion tools are exploited to obtain full state pseudo-observations at a common epoch. The mean and covariance of these pseudo-observations are nonlinearly computed by evaluating the expectation of high order Taylor polynomials. Finally, a linear scheme is employed to update the current knowledge of the orbit. Angles-only observations are considered and simplified Keplerian dynamics adopted to ease the explanation. Three test cases of orbit determination of artificial satellites in different orbital regimes are presented to discuss the feature and performances of the proposed methodology

    A high order method for orbital conjunctions analysis: Monte Carlo collision probability computation

    Get PDF
    Three methods for the computation of the probability of collision between two space objects are presented. These methods are based on the high order Taylor expansion of the time of closest approach (TCA) and distance of closest approach (DCA) of the two orbiting objects with respect to their initial conditions. The identification of close approaches is first addressed using the nominal objects states. When a close approach is identified, the dependence of the TCA and DCA on the uncertainties in the initial states is efficiently computed with differential algebra (DA) techniques. In the first method the collision probability is estimated via fast DA-based Monte Carlo simulation, in which, for each pair of virtual objects, the DCA is obtained via the fast evaluation of its Taylor expansion. The second and the third methods are the DA version of Line Sampling and Subset Simulation algorithms, respectively. These are introduced to further improve the efficiency and accuracy of Monte Carlo collision probability computation, in particular for cases of very low collision probabilities. The performances of the methods are assessed on orbital conjunctions occurring in different orbital regimes and dynamical models. The probabilities obtained and the associated computational times are compared against standard (i.e. not DA-based) version of the algorithms and analytical methods. The dependence of the collision probability on the initial orbital state covariance is investigated as wel

    Nonlinear control of leader-follower formation flying

    Get PDF
    This paper considers the problem of relative motion control involved in a leader-follower formation keeping mission. More specifically, center of mass dynamics of two Earth orbiting satellite is modeled, including the nonlinearity due to Earth oblateness. Next, the differential algebra is exploited to compute an high order Taylor expansion of the State-Dependent Riccati Equation (SDRE) solution. This new approach reduces the computational cost of the online Algebraic Riccati Equation solution required by SDRE algorithm; in fact, the differential algebraic formulation gives a polynomial representation which can be directly evaluated for SDRE solutions or exploited to define an initial first guess for iterative SDRE algorithms

    Diffraction limited optics for single atom manipulation

    Full text link
    We present an optical system designed to capture and observe a single neutral atom in an optical dipole trap, created by focussing a laser beam using a large numerical aperture N.A.=0.5 aspheric lens. We experimentally evaluate the performance of the optical system and show that it is diffraction limited over a broad spectral range (~ 200 nm) with a large transverse field (+/- 25 microns). The optical tweezer created at the focal point of the lens is able to trap single atoms of 87Rb and to detect them individually with a large collection efficiency. We measure the oscillation frequency of the atom in the dipole trap, and use this value as an independent determination of the waist of the optical tweezer. Finally, we produce with the same lens two dipole traps separated by 2.2 microns and show that the imaging system can resolve the two atoms.Comment: 8 pages, 9 figures; typos corrected and references adde

    An automatic domain splitting technique to propagate uncertainties in highly nonlinear orbital dynamics

    Get PDF
    Current approaches to uncertainty propagation in astrodynamics mainly refer to linearized models or Monte Carlo simulations. Naive linear methods fail in nonlinear dynamics, whereas Monte Carlo simulations tend to be computationally intensive. Differential algebra has already proven to be an efficient compromise by replacing thousands of pointwise integrations of Monte Carlo runs with the fast evaluation of the arbitrary order Taylor expansion of the flow of the dynamics. However, the current implementation of the DA-based high-order uncertainty propagator fails in highly nonlinear dynamics or long term propagation. We solve this issue by introducing automatic domain splitting. During propagation, the polynomial of the current state is split in two polynomials when its accuracy reaches a given threshold. The resulting polynomials accurately track uncertainties, even in highly nonlinear dynamics. The method is tested on the propagation of (99942) Apophis post-encounter motion
    corecore