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Abstract
This paper presents a novel method to obtain the solution to the initial orbit determination
problem for optical observations as a continuum of orbits—namely the orbit set—that fits the
set of acquired observations within a prescribed accuracy. Differential algebra is exploited
to analytically link the uncertainty in the observations to the state of the orbiting body with
truncated power series, thus allowing for a compact analytical description of the orbit set. The
automatic domain splitting tool controls the truncation error of the polynomial approximation
by patching the uncertainty domainwith different polynomial expansions, effectively creating
a mesh. The algorithm is tested for different observing strategies to understand the working
boundaries, thus defining the region for which the admissible region is necessary to extract
meaningful information from observations and highlight where the new method can achieve
a smaller uncertainty region, effectively showing that for some observing strategies it is
possible to extract more information from a tracklet than the attributable. Consequently, the
method enables comparison of orbit sets avoiding sampling when looking for correlation
of different observations. Linear regression is also implemented to improve the uncertainty
estimation and study the influence of the confidence level on the orbit set size. This is shown
both for simulated and real observations obtained from the TFRM observatory.

Keywords Space debris · Initial orbit determination · Statistical analysis · High-order
methods · Differential algebra

1 Introduction

Determining the state of resident space objects (RSOs) is crucial to maintain a collision-
free environment in space, predict space events and allow uninterrupted delivery of services
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from operational satellites. New observing technologies are now capable of detecting objects
which were too small or too far away to be observed in the past, thus delivering many more
observations than before. This, coupled with the ever-growing number of RSOs, calls for
more efficient methods able to deal with the amount of data produced (Hussein et al. 2014).
Furthermore, when performing survey campaigns, the selected schedule and/or visibility
constraints often result in short-arc observations (Tommei et al. 2007) with long observing
gaps, which do not allow for precise orbit determination during a single passage of the object
over an observing station. Indeed, being the detections very close in time, little is known about
the geometry of the orbit. Thus, for each set of observations—namely a tracklet—there ismore
than one orbit that complies with the acquired data, as shown in Fig. 1a. The set of admissible
solutions corresponding to a single tracklet is here called the orbit set (OS). To reduce the
uncertainty on the solution and pinpoint the correct orbit associated with the observation, one
needs other independent observations of the same object as sketched in Fig. 1b. The main
challenge in this, however, is to determine whether two or more observations pertain to the
same object, thus whether they are correlated, since the objects are unknown when observed.
This is the problem of data association, where one has to look for a common solution in the
two OSs generated by the observations, as shown in Fig. 1c and d. The aim of this paper is
thus to determine a compact formulation of the OS so that the intersection of two or more
uncertainty volumes can be easily found and calculated. In the literature, the admissible region
(AR) is the most known approach to deal with too-short arcs where classical methods for
initial orbit determination (IOD) fail. Developed by Milani et al. (2004), the method gathers
all the information available from the tracklet in a four-dimensional vector calledAttributable
and determines the set of ranges and range rates achievable by posing physical constrains:
when setting a maximum eccentricity and a minimum and maximum semi-major axis for the
orbit, one can bound the values for the range ρ and range rate ρ̇, effectively determining the
constraints for the two-dimensional region in the (ρ, ρ̇)-plane. For each point in the plane,
then, the state of the object is defined. Figure 2 shows the AR for a too-short arc simulated
from object 36830.1 The constraints are found by substituting the boundary semi-major
axis and eccentricity in the equations for energy and angular momentum (DeMars and Jah
2013). The method, however, does not consider any uncertainty in the observations, in that
it is completely deterministic and discretizes the AR to perform data association. In the last
years a probabilistic approach is becoming more popular: here the AR is described as a bi-
variate uniform probability density function (PDF), where, thus, each point of the constrained
plane has the same probability to represent the real observation. Although more complete
because it easily allows for the inclusion of uncertainties in observations, measurements and
timing—as described by Worthy III and Holzinger (2015a)—this approach also poses some
new difficulties. Indeed, Worthy III and Holzinger (2015b) describe the constraints for the
variables transformations and conclude that in general it is very difficult to transform a PDF
if the transformation function is not linear or the PDF is not Gaussian (Park and Scheeres
2006), and both assumptions usually do not hold for the IOD case. This problem is not found
in the deterministic approach, where a function may be expressed in another state without
any restriction. Different authors follow the probabilistic approach, such as Armellin and Di
Lizia (2016), Fujimoto (2013), DeMars and Jah (2013). All three of them use a different
approach: the first paper uses differential algebra (DA), the second one maps the AR into
Delaunay variables, while the third usesGaussianmixturemethods (GMMs), where a generic
PDF over the AR is approximated as the sum of Gaussian PDFs.

1 The object numbers used throughout the paper refer to the NORAD ID in https://www.space-track.org/.
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(a) Geometry of the solution
for a short-arc observation. The
true orbit is contained in a wide
range of possible solutions.

(b) Once other observations of
the same object are available,
one can pinpoint the true or-
bit within the uncertainty re-
gion (black ellipse).

(c) Geometry of correlated ob-
servations for short-arc obser-
vations. The black orbit is the
overlapping solution of the two
OSs.

(d) Geometry of uncorrelated
observations for short-arc obser-
vations: no overlapping solution
of the two OSs.

Fig. 1 Initial uncertainty region, precise determination of the orbit with new observations of the same object
and example of correlated and uncorrelated observations

This paper wants to first and foremost identify the range of observing strategies for which the
AR is the only way to extract meaningful information from a too short and/or too uncertain
tracklet. To do so, a new technique to perform IOD based on DA is developed and its working
boundary tested. In the new formulation, uncertainty is described in six dimensions to avoid
the problems of the probabilistic AR and the set of viable states come directly from the
observations properties rather than some a priori physical constraints. The DA approach,
furthermore, would allow for an analytical treatment of the region, thus avoiding the sampling
used in the deterministic AR approach. An in-depth analysis of the uncertainty size for
different orbital regimes, accuracy and separation is then carried out in order to discriminate
when the AR is actually necessary and when instead more information can be retrieved than

123



15 Page 4 of 27 L. Pirovano et al.

Fig. 2 Admissible region for a
too-short arc of observed object
36830

that stored in the attributable. Lastly, the effects of polynomial regression on the observations
and IOD output are studied.

The paper is organized as follows. Section 2 contains all the relevant mathematical tools
to build the algorithm. The theory of the method, called differential algebra initial orbit
determination (DAIOD), is described in Sect. 3 taking advantage of all the mathematical
blocks described in Sect. 2. Results are shown in Sect. 4, while conclusions and future work
are contained in Sect. 5.

2 Mathematical background

This section contains all the building blocks for the DAIOD algorithm. Section 2.1 describes
the basics of DA, Sect. 2.2 describes the linear regression implementation to treat optical
observations, and lastly Sects. 2.3 and 2.4, respectively, describe Gauss’ and Lambert’s
algorithms.

2.1 Differential algebra

This work makes use of DA, a computing technique that uses truncated power series (TPS)
instead of numbers to represent variables (Armellin and Di Lizia 2016). By substituting
the classical implementation of real algebra with the implementation of a new algebra of
Taylor polynomials, any deterministic function f of v variables that is Ck+1 in the domain
of interest [−1, 1]v is expanded into its Taylor polynomial up to an arbitrary order k with
limited computational effort (Berz 1986, 1987). The notation for this is: f ≈ T (k)

f . Similar to
algorithms for floating point arithmetic, various algorithms were introduced in DA, including
methods to perform composition of functions, to invert them, to solve nonlinear systems
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explicitly and to treat common elementary functions (Berz 1999). Ultimately, this technique
allows for the definition of analytical solutions of complicated systems of equations which
normally require numerical techniques to be solved.

2.1.1 Expansion of the solution of parametric implicit equations

An important feature of DA is the expansion of the solution of parametric implicit equations.
Suppose one has to find the solution of a classical implicit equation:

f (x) = 0. (1)

Several well-known algorithms are available to do so, such as Newton’s. Suppose an explicit
dependence on a parameter p can be highlighted in the previous function f , which leads to
the parametric implicit equation

f (x, p) = 0. (2)

DA techniques can effectively handle this problem by identifying the function x(p) in terms
of its k-th order Taylor expansion with respect to the parameter p:

x(p) = T (k)
x (p). (3)

The DA-based algorithm to solve Eq. (2) is now explained. The first step is to consider a
reference value of the parameter p and to compute the solution x by means of a classical
numerical method, such as Newton’s method. Variable x and parameter p are then initialized
as k-th order DA variables. By evaluating function f in DA, one obtains the k-th order
expansion of f with respect to x and p:

f = T (k)
f (x, p), (4)

The superscript indicating the polynomial order will be dropped in the following equations
for clarity purpose. A constant order k is to be implied. The map is then partially inverted
through a built-in DA routine, which returns

x = Tx ( f , p). (5)

As the goal is to compute the k-th order Taylor expansion of the solution x(p) of Eqs. (2),
(5) is evaluated for f = 0

x = Tx ( f = 0, p) = Tx (p). (6)

Themap thus expresses howavariation of the parameter p affects the solution x as a k-th order
Taylor polynomial, all the while imposing f = 0. Although a classical numerical method
is necessary to start the computation, the advantage is the final map obtained: whenever
one needs to investigate the sensitivity of the output with respect to parameter p, one can
perform simple function evaluations rather than other numerical computations. In this paper,
one can assume x to be the state of the object, which depends on the observations and their
variation (respectively, parameter p and δ p), such that the six angles define an orbit (the
condition f = 0). The accuracy of the approximation depends on both the order k of the
Taylor expansion and the displacement δ p from the reference value of the parameter. Thus,
a careful analysis is always mandatory to tune the expansion order to assure that Eq. (6) is
sufficiently accurate for the entire range of p we are interested in.
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(a)

(c) (d)

(b)

Fig. 3 Example of ADS applied to Gaussian function (Pirovano et al. 2017)

2.1.2 The automatic domain splitting tool

An alternative solution to the tuning of the expansion order and range of domain of interest
is the use of the automatic domain splitting (ADS) tool. The ADS estimates the truncation
error of a TPS, pinpoints the variable that most affects it and halves the initial domain along
that variable, when the truncation error exceeds a fixed tolerance. The tool then evaluates
a new Taylor expansion for each of the two new domains. The process is repeated until
all TPS obtained lie on a region within the set tolerance. The output is then a mesh of
domains and respective TPS, whose union corresponds to the initial DA set. Figure 3 shows
an example: here the Gaussian function and the tenth-order single polynomial approximation
are shown, respectively, in Fig. 3a and c,where the error between real function and polynomial
approximation is shown to grow unbounded when getting further from the expansion point.
Figure 3b and d, on the other hand, respectively, shows the mesh created by the ADS and the
error between the real function and the set of polynomials used to patch the domain. Here,
the error is controlled up to the specific tolerance e = 10−5.

The most crucial problem within the tool is the estimation of the error between the real
function and the TPS that approximates it. The theory behind the error estimation function
is explained in Wittig et al. (2015). The ADS needs two more inputs in addition to the DA
domain, which are the maximum allowed truncation error er and the maximum number of
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Fig. 4 Flowchart for the ADS
tool

splits N . The latter is introduced to avoid unnecessary splits that create domains too small
to be relevant. The tool can be used for any function, for example, Wittig et al. (2014) were
the first ones to use it to accurately propagate uncertainty. Figure 4 shows the flowchart of
the tool.
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2.2 Linear regression of observations

A list of observed angles in consecutive epochs for a single object is called tracklet. Tracklets
usually contain three or more observations, each observation being made of a right ascension
α, a declination δ, a precision σ and a time of observation t . To account for sensor-level errors,
the precision of the observation can be modelled as white noise and thus be considered as a
Gaussian random variable with zero mean and σ standard deviation (Poore et al. 2016):

Y ∼ N (y,Σ), (7)

where, for the case of optical observations analysed in this paper, the observed values y
are the right ascension α and the declination δ, while Σ is a diagonal matrix containing
the variances σ 2. When performing IOD, three independent observations are needed, and to
exploit the full length of the tracklet, the first, middle and last observations are usually used.
However, this means that some data are left unused, when the tracklet contains more than
three observations. To take advantage of all observations, some kind of regression can be
performed and exploited to reduce the overall uncertainty. For example, when tracklets are
too short, information about the orbit’s curved path is very scarce and thus it can sometimes
be linearly approximated, which is actually the basis of the attributable approach by Milani
et al. (2004). This happens especially in the case of geostationary Earth orbits (GEOs), where
the apparent null motion with respect to the observatory enhances the problem of gaining
information about the orbit. In this case, the distribution of the right ascension and declination
can be linearly regressed with respect to time, following the well-known linear regression
equation Ŷ = β̂0 + β̂1X : [

α̂

δ̂

]
=

[
α̂0

δ̂0

]
+

[ ˆ̇α
ˆ̇δ

]
t . (8)

In case of different precisions within the same tracklet, weights can be constructed as the
inverse of the square precision: w = σ−2. Regression can be conveniently performed at
the central time of observation (C): it will be shown that in this case the resulting slope
and intercept are uncorrelated. The four-dimensional vector containing the estimated values

(α̂C , δ̂C , ˆ̇α, ˆ̇δ) is the attributable from the admissible region approach. The quantity

T = β̂ − β

s
β̂

∼ tN−2 (9)

is known to be distributed as a Student’s T (Casella and Berger 2001), where β̂ stands for
any of the four estimated coefficients that constitute the attributable, N is the number of
fitted parameters and s

β̂
is standard estimate (SE) of the coefficient β̂. The covariance of the

attributable is a diagonal matrix whose elements can be written as a function of N , the root
mean square error (RMSE) of the regression sŶ and the tracklet length Δt

Σ(
β̂0,β̂1

) = sŶ

⎛
⎜⎝

1

N
0

0
12

N (N + 1)(N − 1)Δt2

⎞
⎟⎠ , (10)
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where (β̂0, β̂1) = {(α̂C , ˆ̇α), (δ̂C , ˆ̇δ)}. This result is obtained by considering the covariance
definition

Σ(
β̂0,β̂1

) = s2
Ŷ
(HTH)−1 = s2

Ŷ

⎛
⎜⎜⎜⎝

∑
i x

2
i

N
∑

i x
2
i − (∑

i xi
)2 −

∑
i xi

N
∑

i x
2
i − (∑

i xi
)2

−
∑

i xi

N
∑

i x
2
i − (∑

i xi
)2 N

N
∑

i x
2
i − (∑

i xi
)2

⎞
⎟⎟⎟⎠ (11)

where Hi = [1 ti − tC ]. Remembering that we are performing regression at the central time
of observation, differently from Fujimoto and Alfriend (2015) who perform it at t = t0, the
following holds:

• ∑
i xi = 0 and thus x = 0. This is exploited to obtain a diagonalmatrix, thus uncorrelated

coefficients.

• ∑
i x

2
i = ∑ N−1

2

i=− N−1
2

Δt2i2 = 2Δt2
∑ N−1

2
i=1 i2 = 1

12
N (N + 1)(N − 1)Δt2.

The same conclusion was reached by Siminski (2016) and Maruskin et al. (2009) (after
rearranging the equations with different variables). Taking one step forward, it is possible
to infer statistical properties of the fitted observations starting from the attributable. Indeed,
being the fitted values a linear composition of the estimated coefficients, their variance is:

ΣŶi
= Hi Σ

(
β̂0,β̂1

) HT
i . (12)

It is thus possible to define a confidence interval (CI) of the fitted observations. This is the
intervalwithinwhich the true value can be foundwith confidence levelα. It can be constructed
through ΣŶi

and the Student’s T quantiles:

CI:
[
Ŷ ± t α

2 ,n−2 ·
√
diag(ΣŶ )

]
(13)

where α is the confidence level. This statistical manipulation of data usually achieves a much
smaller uncertainty on the observed angles, given that more information is used and is thus
beneficial to the process of IOD in that a smaller uncertainty volume needs to be taken into
account. This, however, only holds when linear approximation is valid: depending on the
p-value of the statistics, one may decide either to add higher-order terms to the regression or
workwith rawdata instead.Whenever linear regression is found beneficial, fitted observations
are used instead of raw observations and consequently the confidence interval is chosen over
the 3σ uncertainty from the instrument precision. Figure 5 summarizes the regression showing
the observations (dots), the mean prediction (solid line) and the CI (dashed lines).

2.3 Gauss’ algorithm

Gauss’ algorithm takes as input three times of observations (t1, t2, t3), the positions of the
observatory at these times (R1, R2, R3) and the direction cosine vectors (ρ̂1ρ̂2ρ̂3). The
algorithm then estimates the slant ranges (ρ1, ρ2, ρ3) in order to obtain the object positions

r i = Ri + ρi ρ̂i, where i = 1, 2, 3 (14)

in two-body dynamics. The description of this algorithm can be found in Curtis (2015).
The quality of the solution degrades when the arc is too long, due to the approximations
considered, and when it is extremely short, due to the geometry of the problem. For our
method, we use the solution of the Gauss’ algorithm to obtain an initial estimate for the slant
ranges.
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Fig. 5 Regression for the right
ascension α centred at the central
time of observation. Values are
amplified by a factor 1000 for
clarity purpose (Pirovano et al.
2018)

2.4 Lambert’s algorithm

Lambert’s algorithm takes as input two position vectors, the Δt between them and the grav-
itational parameter, and gives as output the velocity vectors. Thus, the algorithm produces
the state of the object at two different epochs, following Keplerian dynamics. Since it is not
possible to solve the problem analytically, as outlined in Vallado andMcClain (2001), several
methods were created in the past. For the work at hand, the C++ implementation by Izzo
(2014) has been used, after updating it to be able to accept both double precision and DA
variables.

3 DAIOD Algorithm

This section describes the DAIOD algorithm, which takes advantage of the mathematical
blocks described in Sect. 2. The algorithm was firstly defined and used in Armellin et al.
(2012). The latest variations which are implemented in this paper were firstly introduced in
Pirovano et al. (2017) and later exploited by Principe et al. (2017) to obtain a first estimate of
the state for orbit determination of tracks. The DAIOD algorithm takes as input the optical
observation of an object and gives as output the TPS of the object state at the central time of the
observation, depending on the six-dimensional uncertainty of the observations considered.
Depending on the length of the observation and measurement accuracy, fitted observations
defined in Sect. 2.2 may be used instead of raw data.

The choice of introducing a different method to perform IOD came from the necessity to
not only obtain a point solution, but also a converging map in the neighbourhood. Section 4.2
will compare the DAIOD algorithm against Gooding’s method and a slight variation of it. All
three methods converge to the same nominal solution but have different behaviours towards
the map expansions, where the DAIOD results a more attractive choice. Gauss’ algorithm
is firstly exploited to obtain an initial estimate of the object position at t1, t2 and t3. The
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(a) Gauss: first guess for the ranges. They
do not define a unique orbit and the ve-
locity vector is discontinuous at the central
time of observation.

(b) Lambert: continuity for the velocity
is imposed to find the correction for the
ranges. One unique orbit is defined for the
nominal observations.

Fig. 6 First Lambert’s step of DAIOD algorithm

observatory state can be retrieved through SPICE (Acton 1996),2 while the direction cosines
are found through the observation angles:

ρ̂i =
⎡
⎣cos δi cosαi

cos δi sin αi

sin δi

⎤
⎦ (15)

where i = 1, 2, 3 refers to the observation epochs (Curtis 2015).
The output of the Gauss’ algorithm is an estimate for the position vectors r1, r2 and r3.

Having the position vectors, it is then possible to compute the velocities through Lambert’s
algorithm: indeed, given two position vectors and theΔt between them, Lambert’s algorithm
produces the velocity vectors as output. This means that by computing Lambert’s algorithm
twice—from t1 to t2 and from t2 to t3—one should be able to retrieve the three state vectors.
However, given the simplifications performed within Gauss’ algorithm, the equality of the
two velocity vectors v−

2 and v+
2 is not ensured, as sketched in Fig. 6a. To fix this problem

and obtain the dependency between state and observations uncertainty, a two-step Lambert’s
solver is implemented. The first step finds the δρ = (

δρt1 , δρt2 , δρt3
)
necessary to ensure

that v−
2 −v+

2 = 0. Once the three ranges are forced to be part of the same orbit, as sketched in
Fig. 6b, the second step determines the new solution (r2, v2) as a function of the observation
angle variations δα and δδ. This last step returns an analytical description of the state variation
due to variations in the observations,where point values canbe found just bymeansof function
evaluations. Analysing the neighbourhood of the solution is indeed essential because the
observations are not free of errors, and hence, they allow for a range of solutions rather than
a single point. This final function encloses all possible orbits that fit the observations within
a certain precision; hence, it is the OS, the set of admissible solutions corresponding to a
single tracklet.

The first Lambert’s routine is started by initializing the output of Gauss’ algorithm as DA
variable, that is ρ0 = [ρt1 ρt2 ρt3 ]. In this way, the output of Lambert’s algorithm is a vectorial

2 Toolkit website: https://naif.jpl.nasa.gov/naif/toolkit.html.

123

https://naif.jpl.nasa.gov/naif/toolkit.html


15 Page 12 of 27 L. Pirovano et al.

function that depends on the variations of the slant ranges starting from the nominal solution
given by Gauss’ algorithm. In particular,

{
v−
2 = Tv−

2

(
ρt1 , ρt2

)
v+
2 = Tv+

2

(
ρt2 , ρt3

)
.

(16)

With the goal of solving the discontinuity in t2, the Δv between the left and right velocities
is calculated:

Δv = v+
2 − v−

2 = Tv

(
ρt1 , ρt2 , ρt3

)
. (17)

The equation is made of a constant residual Δvres �= 0—as highlighted in Fig. 6a—and a
function of the slant ranges. By forcing Δv = 0, one has to solve a system of three equations
in three unknowns to find the δρ necessary to obtain it. Newton method for DA explained in
Sect. 2.1.1 is used here: ρ0 is indeed the tentative solution, Δv − Δvres is function f , and
ρ is variable x. Thus, we need to calculate the variation Δx such that f = 0. To do so, we
firstly partially invert Eq. (17) by exploiting DA routines:

Δv = TΔv (ρ) → ρ = Tρ (Δv) (18)

and then evaluate the new map for Δv = 0, thus finding the variation needed:

Δρ = Tρ (Δv = 0) . (19)

Once the variation is summed to the initial guess, one obtains:

ρ1 = ρ0 + Δρ = Tρ(ρ). (20)

Since the change in the slant range also modifies the velocity vectors, Eqs. (16–20) are placed
in a while-loop that stops once ‖ρi+1 − ρi‖ < ερ , where i is the number of iterations. The
constant part of the resulting map, here called ρL , allows for the definition of the state of a
satellite whose orbit intersects the three starting observations within the prescribed accuracy
ερ . However, the final Taylor expansion depends on the slant ranges, as seen in Eq. (20). This
is not useful, since one wants the solution in terms of the observations deviation. For this
reason, the second step of the Lambert’s solver is implemented by initializing the six observed
angles as DA variables. The values used for the angles are either the raw observation data
from the observatory or the fitted values from the regression, while their maximum variation
(Δα,Δδ) is, respectively, either 3σ—the Gaussian CIs given by the precision of the raw
observation—or the Student’s T CIs for the fitted values from linear regression (Sect. 2.2).
At this point, the position vector at central time of observation is initialized as:

r i = Ri + ρL1 · ρ̂i (αi , δi ) = Tr i (αi , δi ) , for i = 1, 2, 3 (21)

where the DA direction cosines are found by plugging the six DA angles into Eq. (15). Once
the three position vectors are given to the Lambert’s algorithm in couples,Δv2 = TΔv2 (α, δ).
This time partial inversion cannot be performed, since nine DA variables would be needed:
six angular variables (parameter p) and three position variables (variable x). The use of nine
variables is avoided for two reasons: firstly, once the inversion is computed, three DA variable
would be left unused, but still be weighing on the algorithm performance and secondly an
increase in the number of variables produces an influential increase in computational and
storage requirement (Berz 1986).

Thus, differently from Armellin et al. (2012), a simple first-order DA Newton’s scheme
is used to compute ρ = Tρ (α, δ):

Tρi+1 (α, δ) = Tρi (α, δ) − J−1
Δv(ρ0)

· TΔv (α, δ) , (22)
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where the Jacobian JΔv(ρ0)
is easily retrieved as the linear part of Eq. (20). Here, the assump-

tion is made that the Jacobian does not change in the loop. The iteration is carried out until
i = k, thus until the highest order of the DA variable is reached. The result is the state of the
satellite at central time as a map on the domain defined by the six DA angles:

fIOD ≈ TIOD : (α, δ) ⊂ R
6 → (r2, v2) ⊂ R

6. (23)

An important outcome of this method is that one not only obtains the point solution, but can
also easily calculate its variation within the CI designated by means of functions evaluations
and observe polynomial dependencies. The solution is thus the OS we wanted to compactly
define.

However, polynomial approximations are only valid for neighbouring variations of the
nominal solution, as highlighted in Sect. 2.1.1. This implies that one single TPS may not be
able to cover the entire initial domain. For this reason, the ADS described in Sect. 2.1.2 is
applied to the algorithm. If necessary, the initial domain is thus split until the precision of
the map reaches a defined tolerance εr . Equation (24) shows the final function:

fIOD+ADS =
⋃
j

T j : (α, δ) j ⊂ R
6 → (r2, v2) j ⊂ R

6. (24)

The entire process supposes an initial good estimate from the Gauss’ algorithm and the
presence of an elliptical solution to the Lambert’s algorithm for every point considered
within the CI. However, this may not be the case for too-short observations and very uncertain
observations. For the first case, the initial estimate from Gauss may be poor due to scarce
knowledge of the orbit and thus impede the loop on Lambert’s algorithm to converge for a
point solution, while for the latter case, supposing the availability of a point solution, a too
large uncertainty may include re-entering or hyperbolic solutions, which thus would make
the expansion routine fail when looking for an elliptical solution.

An important variable to be chosen is the order of the Taylor polynomials. The order has a
considerable impact on the number of monomials in the Taylor representation and thus on the
computation time. On the other hand, the lower the order of the polynomial is, the smaller the
domain of validity of the expansion is, thus requiring more splits. The ADS also imposes the
requirement of at least a third-order polynomial to accurately estimate the truncation error.
Thus, a trade-off between computing time for polynomial operations and splitting routine
has to be made, with the constraint of a lower bound. The optimal order for this algorithm
was found to be 6.

4 Results

This section presents the results achieved by applying the DAIOD algorithm to observations
obtained with different strategies, both real and simulated.

As a first result to appreciate the double-step approach to the IOD problem, Fig. 7a shows
the variation in slant range that is achieved with the differential correction in Lambert’s
algorithm starting from the initial solution throughGauss’ algorithm to solve the discontinuity
in velocity at central time of observation depicted in Fig. 7b. The plot is composed of 100
simulations for each observing strategy. As small as it may seem, the correction ensures
continuity for the velocity vector at the central time of observation and it is thus fundamental
to retrieve the orbit of the orbiting body. As expected, the correction is independent of the
uncertainty of the observation, as it only considers the geometry of it. This can be seen
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(a) Differential correction on range to ob-
tain continuity at central time of observa-
tion. Δρ = |ρGauss − ρLambert|.

(b) Initial difference in velocity at central
time of observation Δv = ‖vvv+

2 − vvv−
2 ‖.

Fig. 7 Initial discontinuity and differential correction to solve it during the Gauss–Lambert routine

especially for longer observations, while for shorter observations the lower success rate of
the algorithm affects the results.

Section 4.1 tests the validity of the DAIOD algorithm for strategies that differ in precision
and length of observation. For these tests observations were simulated. Section 4.2 compares
the OS as obtained through Lambert’s or Gooding’s algorithms. Section 4.3 analyses the
effects of linear regression on synthetic observations, while Section 4.4 shows the effects of
the truncation error control performed by the ADS on real observations. Although results
were obtained as 6D polynomial functions, they are shown as 2D projections on the AR for
clarity and comparison purposes. The OS is also compared against the arbitrary direction
(AD) method, which makes use of the line of variations (LOV).

4.1 Validity of DAIOD algorithm

The DAIOD algorithm is sensitive to two main variations in the observations: the tracklet
length and the uncertainty of the observation. The former contains information about the curve
nature of the orbit; thus, the shorter the tracklet is, the lesser is known about it, increasing
the range of possible solutions. The latter directly influences the size of the OS by defining
a larger initial uncertainty domain. This section addresses this sensitivity and analyses the
working boundary of the DAIOD algorithm, building on results presented in Pirovano et al.
(2018). This analysis is necessary to analyse a wide range of different surveying strategies.
The ranges for tracklets length and uncertainty were taken from Dolado et al. (2016) and
adapted to also accommodate the strategy adopted by Siminski et al. (2014) and Zittersteijn
et al. (2015). In particular, when surveying the sky, the range for the track length considered
was [0.33:14] deg in arc length. This scaled to an observing time of [40:3, 600] in GEO
and [5,285] in LEO. The uncertainty spanned [0.25, 50]arcsec. The tests were run on GEO
object 33595 and LEO object 27869, with simulated observations taken from an hypothetical
optical instrument at TFRMobservatory starting on 2016 JAN 11 00:04:47.82. Each
observation was simulated 100 times using the ephemerides of the object created with SPICE
and adding white noise as defined in Eq. (7). Two different outputs need to be analysed: the
quality of the point-wise solution and the success rate for the DAIOD algorithm. The point-
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Fig. 8 DAIOD success rate and quality of point-wise solution for raw LEO, raw GEO and regressed GEO
data

wise solution was achieved by correcting the Gauss’ solution through Lambert’s algorithm,
obtaining ρL at the end of Eq. (20).

Figure 8a and b shows the results for the LEO case, where only a small portion of the
observing strategy area does not ensure 100% success rate. This happens when the point-
wise solution error is roughly above 5%. This behaviour can be compared to that of the
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GEO observation depicted in Fig. 8c and d. One can clearly see that for the same observing
strategy the point-wise solution obtained is poorer and the success rate lower. This is due to
the apparent motion of the object with respect to the observing station: for a given tracklet
length, more information about the orbit can be inferred from a LEO orbit than from a GEO
orbit. Furthermore, Fig. 8c highlights three macro-areas with radically different results: the
lower triangle where the algorithm never failed (precise long observations), the upper triangle
where the algorithm rarely worked (short and very uncertain observations) and the diagonal
belt with a success rate around 80–90%. The reason for failure is the following: the shorter
and more uncertain the observation was, the more unreliable the Gauss’ solution fed to the
Lambert’s algorithm was. This led to non convergence of the iterative process to refine the
state of the object thus falling within hyperbolic orbits and not allowing for a solution. This
can also be noticed in Fig. 8d where the distance of the DAIOD point-wise solution from
the TLE is shown. Whenever the success rate started dropping in Fig. 8c, the distance of
the point solution from the real observation exceeded 5%, in accordance with Fig. 8a, and
went above 10% for very low values of the success rate. The behaviour noted in Fig. 8a–d
determines the overall success rate of the DAIOD+ADS algorithm depicted in Fig. 10a and
b. The algorithm unsurprisingly failed where the DAIOD failed, but also in the neighbouring
belt. In this region, a point-wise solution was available, but it was the map solution that
could not be computed. This was due to solutions of the expansions falling into hyperbolic
or re-entering orbits. Indeed, Fig. 10b shows a range uncertainty ∼ 104 km on the verge of
failure, which is of the same order of magnitude as the solution.

4.2 DAIOD versus Gooding

To be able to iteratively correct the preliminary solution and obtain an orbit—and its neigh-
bouring variation—out of the six observation angles, it is necessary to work with algorithms
that allow the observations to be treated by couples, such that one can implement a differ-
ential correction by imposing constraints. Algorithms such as Gibb’s take as input the three
observations and retrieve the velocity vector geometrically starting from Gauss’ equations,
thus not correcting the preliminary solution for the simplifications in the equations. Good-
ing’s algorithm, on the other hand, allows for such a differential correction since it checks
the state at the central time of observation against the Lambert’s solution obtained with the
boundary observations. The point-wise and map expansion solutions for this method have
thus been compared against the DAIOD algorithm to test the efficiency.

Two different implementations of Gooding’s algorithm have been considered: the original
one where one wants to set to zero the projections of the position vector on the true line of
sight and a modified version where the residuals for the central observations are considered
instead.

For the point-wise solution a first-order DA expansion was chosen, such that it would
match the Newton–Raphson scheme in Gooding’s algorithm. The algorithms were tested
with object 36830, whose observations were simulated from the TFRM observatory with
uncertaintyσ = 1arcsec. Several observations evenly spaced 30seconds apartwere obtained,
thus having Δθ = 0.25degree as the smallest arc length. All three algorithms delivered the
same point-wise solution for the different arc-lengths, the DAIOD and modified Gooding
being the fastest and the original Gooding only being slightly slower. This proved that the
three algorithms were interchangeable to obtain the point-wise solution.

When introducing the map expansion, however, the original Gooding did not reach con-
vergence: the map rapidly diverged when considering order higher than 2. This is because the
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Fig. 9 Point evaluation and splits comparison between DAIOD and DA-based Gooding’s algorithm

rotation matrix needed to calculate the components of the residuals becomes singular when
reaching convergence, not allowing for map inversion to obtain the higher-order terms of the
polynomial expansion. Hence, the modified version was introduced. The modified Gooding
and DAIOD were then compared by computing the point-wise solution and map expansion
in DA framework, also including the ADS, to understand the difference in error growth and
failure boundary. The methods performed almost equally, having the same failure bound-
aries and delivering the same point-wise solution and uncertainty size, as can be seen in the
map evaluation in Fig. 9. However, the Gooding’s algorithm always had to perform more
splits to maintain the same accuracy on the output; the number of splits in Fig. 9 is indeed,
respectively, 8 and 11. This can be explained by the simpler form of the DAIOD residuals
with respect to the Gooding’s algorithm, the former involving difference between Cartesian
components of velocity vectors, while the latter the evaluation of sines and cosines, notably
difficult to handle in DA framework. This transformation goes directly in matrix J which is
then inverted and included in Eq. (22).

4.3 Regression versus raw data

Given the very short nature of the observed tracklets and the apparent null motion of the
satellite with respect to the observing stations, the trails associatedwith theGEOobservations
usually behave linearly, as underlined in Siminski (2016). Building on the mathematical
description defined in Sect. 2.2, linear regression was thus implemented on raw GEO data.
In this section, results on simulated observations are presented to understand the influence
it had on both the point-wise solution and the dimension of uncertainty for varying length
and precision of the tracklet, thus allowing for a comparison with Fig. 8c and d. Figure 8e
and f shows results for, respectively, the success rate for the point-wise IOD and distance
from TLE when fitted observations were considered instead of raw. Success rate reached
100% for any type of tracklet analysed, and the distance from the TLE solution was never
above 102 km. This clearly shows that regression was beneficial to identify a more accurate
point solution; indeed, a point solution was always available. Once the improvement of the
point-wise solution was proved, the map uncertainty analysis was carried out. To assess the
influence that the regression had on the tracklets, the DAIOD+ADS algorithmwas performed
on regressed data with 1% and 5% CIs. Logically, the more confidence was given to the
observations, the smaller the uncertainty on the map was expected to be. Figure 10 depicts
the success rate of the DAIOD+ADS algorithm (on the left) and the uncertainty size (on the
right). The dashed rectangle includes theTFRMobserving strategy,while the circle represents
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the strategy adopted by Zittersteijn et al. (2015) for the ZimSMART telescope. The presence
of known observing strategies in the plots helps the reader understand the change in behaviour
due to the regression and choice of confidence. The white line (Δρ � 16, 000km) shows the
contour level that corresponds to the size of the largest range uncertainty for the AR. Again,
the constraints were amin = 20, 000km, amax = 60, 000km, emax = 0.75.

It is to be underlined that linear regression was not always necessary, as for very long
tracklets nonlinearities were non-negligible and thus higher-order terms would have been
necessary for the regression. Thus, whenever the p value of the regression was consistent,
regression was not performed and raw data were kept. This observation is in accordance with
findings from Siminski (2016).
If on the one side the regression clearly improved the point-wise solution for the DAIOD
algorithm, the success rate for the DAIOD+ADS algorithm and the size of the uncertainty
region were also dependent on the confidence in the observations: the more confidence was
given to the observations, themore the failure boundarywas pushed towards the north-western
part of the plot, when looking at the left column of Fig. 10. This can be noticed in Eq. (13);
indeed, ΔYi depends on both Σi and t , respectively, the variance and the quantile chosen.
Thus, a smaller uncertainty in the angles directly influenced the initial domain,which in return
defined the range of the state uncertainty. Regression was able to attenuate the residuals of
raw data due to inclusion of more information, thus allowing for a smaller uncertainty, but it
is the choice of the CI that mainly drove the size of ΔαCI and ΔδCI.

However, the optimal value for this variable can only be found when looking at the
success rate of data association: too little confidencemay impede the calculation of a solution,
while too much confidence may exclude the real solution from the map and thus cause false
uncorrelations. Therefore, a careful tuning of the confidence level may optimize the search
for correlations avoiding unnecessarily large uncertainties all the while keeping a low rate of
false uncorrelations.

Nevertheless, there is still an area of strategies that cannot be handled by theDAIOD+ADS
algorithm with enough reliability. Indeed, even with a 5% CI the AR approach remains
more attractive for the area containing the ZimSMART strategy, for example. This calls for
alternative DA-based methods that build on the AR to treat the observations uncertainty;
preliminary results for association based on a DA-based AR are included in Pirovano et al.
(2019). This analysis was thus able to define the working environment of the DAIOD+ADS
algorithm, showing that it can better constrain the IOD uncertainties for some observing
strategies, while it fails for others.

When IOD on raw data is feasible, a second approach that considers all observations
in a track is the least squares (LS). The size of the OS obtained with fitted data was then
checked against the confidence region with the same confidence level. A DA-based LS has
been used followed by the computation of the 2D confidence region. For this purpose, one
of the methods proposed in Principe et al. (2019) has been implemented, that is the arbitrary
direction (AD). This algorithm takes as input the point solution for the LS and finds the
gradient extremal (GE) (Hoffman et al. 1986) also known as LOV (Milani et al. 2005) along
v1, which is the main direction of uncertainty of the orbit determination problem. Then,
assuming nonlinearities along v2 are negligible, and the algorithm samples the second main
direction of uncertainty as a straight line. For this approach DA is especially useful since
functions are already available as polynomials. The simulated track had 10 observations
evenly spaced every 40seconds with 1arcsec accuracy. Figure 11 shows that both the AD
and the OS with fitted data can achieve comparable uncertainty regions, much smaller than
the OSwith raw data. The advantage of the AD is that it can work with tracks in GEO as short
as 280s (Principe et al. 2019), while the DAIOD algorithm could handle up to 360s long
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Fig. 10 DAIOD+ADS success rate and range uncertainty for raw and regressed data. Dashed rectangle is
TFRM strategy, circle is ZimSMART strategy, and white line is AR approach (Pirovano et al. 2018)

tracklets. On the other hand, performing a LS results in the loss of the functional dependency
on the input uncertainty, which is the link to the physical world and only deals with the
statistics of residuals. Keeping a polynomial representation of the OS allows to compare
different OSs by means of function evaluations to find the area of input values which overlap,
thus proving correlation and obtaining a new method for data association as opposed to,
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Fig. 11 Comparison between the
uncertainty regions on the range
and range rate plane for IOD with
raw and fitted data and for AD

for example, the Mahalanobis distance. This new method for data association is part of our
current research.

4.4 DAIOD+ADS and regression on TFRM observations

The results presented in this section were obtained with real observations taken with the
Fabra-ROA telescope at Montsec (TFRM), where tracklets were 8 to 14minutes long with
1 to 4 arcsec precision and observations were retrieved every 2minutes. This survey cam-
paign obtained 1 to 2 observations of the same objects on consecutive nights. Given the
large number of observations in a single tracklet, it was possible to construct the AR with
the first three as in Fig. 2 and then sequentially update the AR with each new observation
in the tracklet. This method was introduced in Principe et al. (2017) for the update of the
confidence region associated with a track and now adjusted to the AR approach for tracklets
containing more than three observations. The resulting uncertainty region was compared to
the OS and AD approaches in the range–range rate domain. Considering a 3σ uncertainty
on raw observations, the confidence level for fitted observations and confidence region were
chosen accordingly. Three different observations were considered: a long precise observation
in GEO, a long imprecise observation in GEO and a short precise observation in geostation-
ary transfer orbit (GTO). The tracklets retrieved by the TFRM for GEO observations were
14minutes long, the precise one having a 1arcsec precision,while the imprecise one a 2arcsec
precision. The tracklet retrieved for the GTO observation was 8minutes long with 1arcsec
precision. The length of the tracklets was dictated by the data received by TFRM. However,
given the more pronounced relative motion of the GTO satellites with respect to the obser-
vatory, more information about the curved path of the orbit was obtained. This allowed for
a similar final uncertainty between GTOs and GEOs, despite the shorter observation time.
Figures 12a, 13a and 14a show the absolute error for the polynomial approximation with
ADS, imposing the threshold for position and velocity truncation errors to be, respectively,
1km and 1m/s on each coordinate. These constraints were used for all the computations
within the paper. The grey boxes show the estimated extremities of the polynomial expan-
sions calculated in DA with a polynomial bounder. The red boxes are the pruned AR. The
sequential update of the AR brings to a comparable uncertainty region, however, with much
larger uncertainty in the range rate. One can see that the OS in Fig. 13a exceeds the physical
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Fig. 12 OS, AR and AD for precise GEO observation from TFRM observatory

limit of a = 50000km imposed on the AR thus having amuch larger uncertainty in the range.
A possible workaround to avoid it and reduce the OS size is to update the OS by eliminating
the sub-domains for which the bounds on semi-major axis and eccentricity fall outside the
general AR. Indeed, given a polynomial expression for each sub-domain, it is possible to
obtain the bounds on the orbit in any coordinate system. Comparing Fig. 12a with Fig. 13a,
one can notice that the imprecise observations originated a much larger uncertainty region.
This followed logically from the definition of the OS in Eq. (24). It can be appreciated that
in the precise cases depicted in Figs. 12a and 14a the ADS never had to split the domain as
one single expansion was able to represent the entire uncertainty of the region. Lastly, in all
cases the state of the satellite retrieved through the two-line elements (TLEs)3 was contained
in the uncertainty region.

All results obtained with DAIOD are also compared to the AD. Figures 12b, 13b and 14b
show the uncertainty regions projected on the range–range rate plane. Both methods find
comparable areas and when linear regression is feasible the resulting OS is even smaller, as
already highlighted in Fig. 11. While for the AD sampling along the LOV is necessary to
follow the nonlinear development of the uncertainty, the DAIOD algorithm automatically
found the same region with no point-wise sampling. Furthermore, DAIOD+ADS took 0.8s
for the single polynomial expansions and 56.3s for the split case depicted in Fig. 13. The
AD on the other hand took 113.7s, 132.3s and 115.08s, respectively, for each of the three
cases analysed, on top of the IOD and LS computation time. It has to be noted, however,
that the AD was implemented in MATLAB and not yet optimized for efficiency. Lastly, a
comparison between DA and point-wise approach from the computational point of view is
outlined. A single-point solution for IOD took 10−3 s, while computing the mesh of maps

3 Obtained from https://www.space-track.org/.
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Fig. 13 OS+ADS, AR and AD for imprecise GEO observation from TFRM observatory

Fig. 14 OS, AR and AD for precise GTO observation from TFRM observatory
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took∼ 100−101 s depending on the number of splits. However, when comparing two OSs to
perform data association, several samples are necessary. In Pirovano et al. (2018) 105 samples
were necessary due to the very small intersection volume,while Fujimoto andScheeres (2012)
considered 105 to 107 points to sample the AR. This raised the time necessary for the point-
wise approach to at least 102 s, while performing 105 function evaluations took less than a
second, thus keeping the full computation below 1 min. The strength of DA is thus clear:
when in need for lots of point-wise evaluations, the computational load of creating the map is
acceptable to then save time performing function evaluations. This will come in handy when
looking for intersecting OSs, which can just be performed as a series of function evaluations,
rather than point-wise propagated states retrieved with IOD. Furthermore, partial derivatives
between input and output variables are available through the high-order analytical map. This
is a key strength of the algorithm: target functions for the data association problem are usually
very steep making sampling-based methods not easy to be implemented. In Pirovano et al.
(2018) a subset sampling method was implemented due to failure of the classical Monte
Carlo to find the intersecting volume. The functional description enables the straightforward
implementation of association algorithms based on, for example, bounding and optimization.
Lastly, once the functional relation from observations to states is accurately represented, one
could analyse the uncertainty mapping between the two spaces. Three approaches have been
studied so far in DA: Monte Carlo function evaluation (Armellin et al. 2010), polynomial
approximation of the statistical moments (Valli et al. 2014) and polynomial mapping of the
probability density function (Armellin and Di Lizia 2016).

As a final test for regression and confidence level, results for TFRM observations with
and without regression are shown for different confidence levels. Figure 15 shows the OS of
two GEO observations from the TFRM observatory. On the left, the OSs are computed with
raw data, while on the right the same is done with fitted data. These plots show the influence
of the confidence level on the OS.

One can appreciate two main outcomes from these plots: regressed data produce a smaller
uncertainty region for the same confidence level and their OSs have a concentric behaviour.
The first outcome is already highlighted in Fig. 10, indeed by performing a linear regression
the uncertainty considered was shrunk and the ADS did not have to perform as many splits. A
clear improvement is seen especially in the range uncertainty. The latter outcome is a direct
result of the improvement of the point-wise solution, as highlighted in Fig. 8e and f. Overall,
one can clearly see the OSs shrank whenever more confidence was given to the observations.
However, this may result in the real observation falling out of the uncertainty region if too
much confidence is given, as one can see for the highest confidence in Fig. 15c, where the
real value is on the border of the uncertainty region. If this confidence level were kept,
the association routine may return low probability of correlation. On the other side, if a too
large uncertainty were considered, the probability calculation could become computationally
expensive.

5 Conclusions

This paper analysed a novel method to perform angles-only IOD, which is the initial estimate
of the state of a satellite given six independent angular observations. Building on the Gauss’
solution, the algorithm found the differential correction to improve it by imposing continuity
in the velocity vector at central time of observation through the use of two Lambert’s solvers.
Once the nominal solution was found, the DAIOD method exploited DA to analytically find
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Fig. 15 DAIOD+ADS for raw and regressed data from real observations from TFRM

the set of orbits that fit the three angular observations with uncertainty, namely the OS. Due to
the polynomial nature of the solution, the truncation error had to be controlled: the ADS tool
estimated the truncation error and created a mesh of Taylor expansions to accurately describe
the entire domain. The final algorithm for IOD was thus called DAIOD+ADS. After testing
the usefulness of the ADS for the truncation error control, one further result was obtained for
the computation time: indeed, the effort to compute a polynomial map was alleviated when
performing several function evaluations, which was much faster than performing single IOD
solutions. Thus, the advantage of DA can be appreciated when lots of evaluations are needed,
together with the knowledge of the relationship between input and output, clearly stated in
the polynomial structure.

The sensitivity of the algorithm to tracklet length and observations uncertainty was then
analysed, for both point-wise solution and map expansion. As expected, the longer and
more precise the tracklet was, the higher the DAIOD success rate and point-wise solution
quality were. It was found that the algorithm could handle LEO and GTO orbits more easily
than GEO: this was due to the information about curvature contained in the tracklets which
allowed the algorithm to obtain a smaller uncertainty on the output given the same type of
observation. The DAIOD+ADS algorithm was also affected by these performances, failing
where the DAIOD failed, as expected, but also in the neighbouring region, due to solutions
of the map expansion falling into hyperbolic orbits. Then, linear regression on the tracklet
was introduced. This dramatically increased the success rate and quality of the point-wise
solution. It also improved the size of the map uncertainty, although it was also linked to
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the confidence level chosen for the data CI. The more confidence was given to the data, the
smaller the overall final uncertainty was with an increase in the success rate of the algorithm.
However, the choice of the confidence level cannot be carried out independently and needs
to be carefully tuned for the data association problem: it needs to be the optimal value that
allows for the description of the OS, while keeping low the rate of false uncorrelations—i.e.
wrongly non associating observations of the same object. Nevertheless, there is an area of
observing strategies, among which there was one specific known real observing strategy,
where the algorithm could not provide a reliable IOD solution with accurate uncertainty
quantification. The AR approach is thus the most suitable way to deal with such observation
strategies. A working boundary for DAIOD+ADS could thus be defined.

The algorithm proposed in this paper is a novel method that takes into account six-
dimensional uncertainty in the observations to build a six-dimensional region of solutions—
the OS, differently from the AR approach, which fixes four values and then constrains two
degrees of freedom and the AD, where a LS is performed and the confidence region is based
on residuals. For several observing strategies the proposed approach provides a better descrip-
tion of the IOD uncertainty with respect to the AR approach, showing that there may be more
information in the tracklet than that contained in the attributable. However, it has a limited
working environment, as for very short and/or very uncertain tracklets, the AR still provides
better results. An immediate update of the DAIOD algorithm will be the introduction of
physical constraints as in the AR to update the OS by eliminating those sub-domains where
the bounds on semi-major axis and eccentricity fall outside the constrained region.

The algorithm most important feature is the ability to represent the OS as a polynomial
function of the observation uncertainty, thus making clear the influence of the observations
on the output and keeping an analytical approach rather than point-wise sampling, as found in
the literature. The analytical description will also enable the straightforward implementation
of association algorithms based on bounding and optimization as opposed to sampling. This
is the main difference as opposed to the AD solution, which provides a similar uncertainty
region but relies on sampling and does not have an analytical dependency on input variables.

The next step of this work foresees the development and implementation of the data
association algorithm to analyse multiple OSs and look for intersecting volumes to prove
correlation. This part includes the implementation of a DA+ADS numerical propagator to
keep an analytical description of the flow. In this framework the optimal confidence level
will also be determined. Furthermore, a DA-based treatment of the AR is being thought
of to solve the problem of the very short tracklets that the DAIOD+ADS algorithm cannot
handle. In this way one would exploit the strength of the AR without giving up analytical
representation and uncertainty in the observations. For this type of observations, an efficient
DA-based multi-target tracking solver is being studied.
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