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Abstract A method to deal with uncertainties in initial orbit determination
(IOD) is presented. This is based on the use of Taylor differential algebra
(DA) to nonlinearly map the observation uncertainties from the observation
space to the state space. When a minimum set of observations is available,
DA is used to expand the solution of the IOD problem in Taylor series with
respect to measurement errors. When more observations are available, high
order inversion tools are exploited to obtain full state pseudo-observations
at a common epoch. The mean and covariance of these pseudo-observations
are nonlinearly computed by evaluating the expectation of high order Tay-
lor polynomials. Finally, a linear scheme is employed to update the current
knowledge of the orbit. Angles-only observations are considered and simpli-
fied Keplerian dynamics adopted to ease the explanation. Three test cases of
orbit determination of artificial satellites in different orbital regimes are pre-
sented to discuss the feature and performances of the proposed methodology.
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1 Introduction

Orbit determination is typically divided into two phases. When the number
of observations is equal to the number of unknowns, a nonlinear system of
equations need to be solved. This problem is known as initial (or preliminary)
orbit determination (IOD). When many more observations are taken over an
orbit arc of adequate length, accurate orbit determination (AOD) can be
performed. IOD typically delivers a single solution (or a limited number of
solutions) that exactly produces the available observations. In addition, in
IOD simplified dynamical models are often used (e.g. Keplerian motion) and
measurement errors are not taken into account (the problem is deterministic).
In AOD the approach becomes stochastic because more observations are used
and their noise is taken into account as well. This problem is usually set as an
optimization one, in which the (optimal) solution is the one that minimizes
the observation residuals. The solution is obtained via batch estimation, e.g.
weighted nonlinear least squares, or a sequential estimation, e.g. extended
Kalman Filtering (?).

In this paper we focus our attention on the orbit determination of resident
space objects (RSO) observed on a single passage with optical sensors. Thus,
the problem is the one of an angles-only orbit determination. In order to
determine the orbit, an IOD problem is solved followed by a procedure to
update the initial solution based on the additional observations.

Angles-only IOD is an old problem. Gauss’ (?) and Laplace’s (?) meth-
ods are commonly used to determine a Keplerian orbit that fits with three
astrometric observations. These methods have been revisited and analyzed
by a large number of authors (e.g. ???) and new ones introduced more re-
cently. The Double r-iteration technique of ? and the approach of ? are two
examples of angles-only methods introduced for the IOD of RSO.

In 2012 ? proposed a IOD solver based on the solution of a Lambert’s
problem (between the second and the third observations) and a Kepler’s
problem (between the first and second observation). The method iterates on
the slant ranges at the second and third observations in order to drive to zero
the observational defects at the first observation. The iterations were carried
out with a high-order extension of Newton’s method enabled by differential
algebra (DA). In addition, high order Taylor expansions were exploited to
nonlinearly map the uncertainties from the observation space to the state
space.

In this work, a modified version of the method is proposed, in which all
the three slant ranges are the problem unknowns. The approach is based
on the solution of two Lambert’s problems and using the continuity of the
velocity vector at the central observation as constraint. The method has no
restrictions on the geometry of the observations and it can deal with both
short and long gaps. As in the previous work, the solution is obtained with a
high-order Newton’s iteration scheme enabled by DA. This approach allows
the algorithm to both converge in few iterations and map uncertainties from
the observation space to the state space. Thus, the initial orbit is already
provided with statistical information.
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When multiple observations on the same passage are available the IOD
solution is updated. Instead of adopting a classical least squares approach
(which employs the linearization of the dynamics and of the measurement
functions (?)) high order inversion tools available in DA are exploited to non-
linearly map group of observations to the state space at a common epoch.
This is equivalent to having measurements of the object full state at the
mapped epoch; thus these measurements are referred to as full state pseudo-
observations. The mean and covariance of these pseudo-observations are non-
linearly computed by evaluating the expectation of the related high order
Taylor polynomials. Finally, a linear updating scheme is utilized to update
the current knowledge of the state mean and covariance.

The paper is organized as follows. A brief introduction on the DA tools
used for the implementation of the algorithm is given first. This covers the
methods to expand the solution of ordinary differential equations (ODE),
compute the expansion of the solution of parametric implicit equations, and
the algorithm to map statistics through nonlinear transformations. The fol-
lowing sections describe the main algorithms developed in this work, i.e. the
angles-only IOD solver and the updating scheme. Simulated observational
scenarios for a Geosynchronous Transfer Orbit (GTO), a Geosynchronous
Orbit (GEO) and a Molniya are used to assess the performances of the im-
plemented methods. Some final remarks conclude the paper.

2 Differential Algebra tools

DA supplies the tools to compute the derivatives of functions within a com-
puter environment (?). More specifically, by substituting the classical im-
plementation of real algebra with the implementation of a new algebra of
Taylor polynomials, any function f of v variables is expanded into its Taylor
polynomial up to an arbitrary order n with limited computational effort. In
addition to basic algebraic operations, operations for differentiation and inte-
gration can be easily introduced in the algebra, thusly finalizing the definition
of the differential algebra structure of DA (??). Similarly to algorithms for
floating point arithmetic, various algorithms were introduced in DA, includ-
ing methods to perform composition of functions, to invert them, to solve
nonlinear systems explicitly, and to treat common elementary functions (?).
The DA used for the computations in this work was implemented in the soft-
ware COSY INFINITY (?). The reader may refer to ? for the DA notation
adopted throughout the paper.

2.1 Expansion of the solution of parametric implicit equations

Well-established numerical techniques (e.g., Newton’s method) exist to com-
pute numerically the solution of an implicit equation

f(x) = 0, (1)

with f : <n → <n. Suppose an explicit dependence on a vector of parameters
p can be highlighted in the vector function f , which leads to the parametric
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implicit equation

f(x,p) = 0. (2)

We look for the function x(p) that solves (2) for any value of p.
DA techniques can effectively handle the previous problem by represent-

ing x(p) in terms of its Taylor expansion with respect to p. This result is
achieved by applying partial inversion techniques as detailed in ?. The final
result is

[x] = x+Mx(δp), (3)

which is the k-th order Taylor expansion of the solution of the implicit equa-
tion. For every value of δp, the approximate solution of f(x,p) = 0 can be
easily computed by evaluating the Taylor polynomial (3). Apparently, the
solution obtained by means of the polynomial map (3) is a Taylor approxi-
mation of the exact solution of Eq. (2). The accuracy of the approximation
depends on both the order of the Taylor expansion and the displacement δp
from the reference value of the parameter.

2.2 Nonlinear mapping of the estimate statistics

Consider a random variable x ∈ <n with probability density function (pdf)
p(x) and a second random variable y ∈ <m related to x through the nonlinear
transformation

y = f(x). (4)

The problem is to calculate a consistent estimate of the main cumulants of
the transformed pdf p(y).

The Taylor expansion of y with respect to deviations δx can be obtained
automatically by initializing the independent variable as a DA variable and
evaluating (4) in DA framework. For the i-th component of y, this procedure
delivers

[yi] = fi([x]) = yi +Myi(δx) =
∑

p1+···+pn≤k
ci,p1...pn · δxp11 · · · δxpnn , (5)

where in this expression yi is the zeroth order term of the expansion map,
and ci,p1...pn are the Taylor coefficients of the resulting Taylor polynomial

ci,p1...pn =
1

p1! · · · pn!
· ∂

p1+···+pnfi
∂xp11 · · · ∂xpnn

. (6)

The evaluation of (5) for a selected value of δx supplies the k-th order Taylor
approximation of yi corresponding to the displaced independent variable.
The Taylor series in the form (5) can be used to efficiently compute the
propagated statistics (??). The method consists in analytically describing the
statistics of the solution by computing the l-th moment of the transformed
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pdf using a proper form of the l-th power of the solution map (5). The result
for the first two moments is
µyi = E{[yi]} =

∑
p1+···+pn≤k

ci,p1...pnE{δxp11 · · · δxpnn }

P yiyj = E{([yi]− µi)([yj ]− µj)} =
∑

p1+···+pn≤k,
q1+···+qn≤k

ci,p1...pncj,q1...qnE{δxp1+q11 · · · δxpn+qnn },

(7)
where ci,p1...pn are the Taylor coefficients of the Taylor polynomial describing
the i-th component of [y] (in the covariance matrix formula, the coefficients
ci,p1...pn and cj,q1...qn are updated to include the subtraction of the mean).
Note that the expectation values on the right side of Eq. (7) are function of
the known p(x).

When x is a Gaussian random variable, its statistics are completely de-
scribed by the first two moments, i.e. the mean µ and the covariance matrix
P . The expectation value terms of Eq. (7) are thus functions of the initial
mean and covariance only and they can be computed applying Isserlis’s for-
mula (?). The resulting moments are then used to describe the transformed
pdf.

3 DA-based angles-only IOD

In angles-only IOD three couples of right ascension and declination angles,
(αi, δi), are available at epoch ti, with i = 1, . . . , 3. From these observations
three inertial light of sights ρ̂i, i.e. the unit vectors pointing from the observer
to the object, are known. Assume to have first guess values of the slant ranges
ρi or equivalently for the orbit radii ri (e.g. from the solution of Gauss’ 8th
degree polynomial). We present a high order iterative procedure with the
following objectives: a) refine the values of ρi assuming Keplerian dynamics,
and b) express the functional dependence of the solution of the IOD problem
with respect to observation uncertainties in terms of a high-order Taylor
polynomials.

We start by initializing the observations as DA variables:

[α] = α+ δα
[δ] = δ + δδ,

(8)

in which we have grouped the observations in two homogeneous vectors, α =
(α1, α2, α3) and δ = (δ1, δ2, δ3), and δα and δδ accounts for measurement
uncertainties. Computing the line of sight vectors at t1, t2 and t3 in the DA
framework yields

[ρ̂1] = ρ̂1 +Mρ̂1
(δα1, δδ1)

[ρ̂2] = ρ̂2 +Mρ̂2
(δα2, δδ2)

[ρ̂3] = ρ̂3 +Mρ̂3
(δα3, δδ3),

(9)

where Mρ̂i
is an arbitrary order Taylor polynomial that describes the effect

of an observation uncertainty on the line of sight.
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Similarly, we initialize DA variables on the topocentric distances at t1, t2
and t3

[ρ1]1 = ρ11 + δρ1
[ρ2]1 = ρ12 + δρ2
[ρ3]1 = ρ13 + δρ3,

(10)

or in more compact form
[ρ]1 = ρ1 + δρ, (11)

where the superscript 1 indicates the first step of the iterative procedure, and
ρ11, ρ12, and ρ13 are the guess values for the slant ranges.

The spacecraft position vectors can be written (by summing the known
observer’s locations) as

[r1] = r1 +Mr1(δα1, δδ1, δρ1)
[r2] = r2 +Mr2(δα2, δδ2, δρ2)
[r3] = r3 +Mr3(δα3, δδ3, δρ3).

(12)

A DA-based Lambert’s problem (?) can be solved between [r1] and [r2],
and between [r2] and [r3]. Using the DA-implementation of Lambert’s prob-
lem we obtain two polynomial approximations for the velocity vector at t2

[v−2 ] = v−2 +Mv−
2

(δα1, δδ1, δα2, δδ2, δρ1, δρ2)

[v+2 ] = v+2 +Mv+
2

(δα2, δδ2, δα3, δδ3, δρ2, δρ3)
(13)

Note that the above expressions of the velocity vector are different for
two reasons. First, the starting values of the slant ranges are not the solution
of the IOD problem; secondly, they have different functional dependence on
the observation angles. The goal is thus a) to find the values of the slant
ranges such that the velocity vector is continuos at the midpoint, i.e., the
exact values of ρ1, ρ2, and ρ3, and b) to approximate the spacecraft state
at t2 as a Taylor polynomial in the observation uncertainties. We start by
defining the Taylor map of the defects

[∆ṽ2] = [v+2 ]− [v−2 ] = ∆ṽ2 +M∆ṽ2
(δα, δδ, δρ). (14)

Note that, for the exact values of ρ1, ρ2 and ρ3, the constant part of maps
(14), ∆ṽ2, would be zero. We now need to find the variations δρ necessary
to cancel out these constants and to express r2 and v2 as Taylor polynomials
in δα and δδ only. The first step is to work with an origin preserving map

[∆v2] = [∆ṽ2]−∆ṽ2 =M∆v2(δα, δδ, δρ). (15)

This polynomial map can be partially inverted using ad-hoc algorithms
implemented in COSY INFINITY, yielding

[δρ] =Mρ(∆v2, δα, δδ). (16)

As we want to eliminate the discontinuity in the velocity at t2 we evaluate
the map (16) in [∆v2] = −∆ṽ2, obtaining

[δρ]1 = δρ1 +Mρ1(δα, δδ), (17)
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which is the Taylor expansion of the corrections of the topocentric distances
to be applied at the end of the first iteration. The second iteration starts
with the Taylor polynomials of the topocentric distances given by

[ρ]2 = ρ1 + [δρ]1 + δρ = ρ2 +Mρ2(δα, δδ, δρ) (18)

where now the explicit dependence on the entire set of observables appears.
Thus, from the second iteration, the Taylor polynomials (12)–(13) depend
on all (δα, δδ, δρ). The iterative procedure ends when the values of ∆ṽ2
are smaller than a prescribed tolerance. At the last iteration k, the Taylor
polynomials of the topocentric distances are given by

[ρ] = ρk + [δρ]k = ρ+Mρ(δα, δδ), (19)

as we do not need any further correction δρ.
Using these expressions, the spacecraft position and velocity vectors at t2

assume the form
[r2] = r2 +Mr2(δα, δδ)
[v2] = v2 +Mv2

(δα, δδ).
(20)

or more compactly
[x2] = x2 +Mx2(δα, δδ), (21)

where x2 = (r2,v2).
As a result of the iterative procedure, r2 and v2 exactly satisfy (in the

two-body model) the nominal observation set (α, δ). Furthermore, for any
displaced value of the observables, the solution of the preliminary determi-
nation problem is computed by evaluating the polynomial (20) in the corre-
sponding values of (δα, δδ). Map (21) is an arbitrary order Taylor polynomial
in δα and δδ, which maps the uncertainties from the observable space to the
spacecraft state space. In particular, the approach described in Section 2.2
can be used to compute the statistical moments of x from the statistics of
the measurements.

4 DA-based IOD update

When more than three optical observations are available, the solution (refer-
ence state and associated statistics) of the IOD problem needs to be updated
to include the additional information. This is carried out through a high-
order filtering technique based on nonlinear mapping of statistics and linear
update scheme, in which only the pdf of the measurements is constrained to
be Gaussian.

The optimal linear estimate of a state x based on a measurement y is
given by

x̂ = µx + P xyP
−1
yy(ỹ − µy) (22)

where µx is the state mean, P xy is the joint covariance of the state and the
measurement, and P yy is the covariance of the measurement. For a general
non-linear measurement with additive noise ỹ = h(x) + η, calculating µy
and the covariance matrices requires full knowledge of the distribution of the
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state. This requirement has two consequences: first the state and its uncer-
tainty need to be propagated forward to the measurement time, and second
the statistics of the measurement need to be calculated through a nonlin-
ear transformation of the current state. In this work we propose addressing
this issue in a different way. The state is always estimated at a fixed epoch
time, and the nonlinear map to transport it to any other epoch is calculated
with the DA framework. Instead of working with y as a function of x, a
full pseudo-measurement of the state is generated from y; the inverse of the
non-linear map from the state to the measurement is readily available from
COSY INFINITY. The advantage of this approach is that only the distribu-
tion of the measurement noise is assumed Gaussian while the distribution of
the state is left unconstrained.

Consider a time span [t0, tf ] and let xk be the state variable at some
time tk ∈ [t0, tf ]. Consider also a set of N measurements ỹi given at times

ti ∈ [t0, tf ] with i = 1, . . . , N . Given the current estimate of the state x̂−
k

and the related error statistics, we can always define the estimated state
as a DA variable and compute the predicted measurement at ti in the DA
framework (the reader may refer to ??? for details). The relation between
state and measurement is a nonlinear map that accounts for the forward
propagation of the initial condition and the measurement function. Under
proper conditions this relation can be inverted to map the observation space
at ti into the state space at tk. The main cumulants of the resulting map can
be computed as described in the previous section, with the assumption that
the statistics of the measurement errors is Gaussian. The computed mean
and covariance are exploited to update the knowledge of xk using a linear
update scheme. This can be done for groups of measurements for which the
dimension of measurement vector yi is equal to the dimension of the state
vector, and the map is invertible.

The resulting method can be made recursive and summarized as follows.
From the IOD algorithm we start from an initial value of the state estimate
and covariance, x̂−

k = µ−
xk

and P−
xkxk

(in general tk = t2, the epoch of the
central observation in the IOD problem.) Define the current estimate at time
of interest tk as a DA variable; i.e.,

[xk] = x̂−
k + δxk. (23)

and propagate it to time ti when a measurement becomes available. The
result takes the form of the following high-order Taylor expansion map

[xi] = x̂i +Mxi
(δxk). (24)

Note that the constant part of this map, i.e. x̂i, is not the predicted mean
at ti due to the nonlinearities of the dynamics (the relation x̂i = µxi

holds
true only if the state transition matrix is used). Then, use the measurement
equation to compute

[yi] = h([xi]) = ŷi +Myi
(δxk), (25)

where h represents the measurement function. Figure 1(a) can be used by
the reader to better understand the meaning of Maps (24)–(25).
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δxk

δyi

x̂−
k x̂i +Mxi

(δxk)
x̂i

ŷi

ŷi +Myi
(δxk)

(a) Direct maps representation

ỹi

x̂−
k

ŷi

ỹ i
− ŷ i

x̂
−
k
+
M z k

(δ
y i
)

µzk

z̃k

z̃k − µzk

(b) Inverse map representation

Fig. 1: Sketch of the Taylor maps involved in the construction of the DA-base
map inversion nonlinear filter.

The next step consists in defining an origin preserving map

δyi = [yi]− ŷi =Mδyi
(δxk). (26)

This polynomial map can be inverted if two conditions are satisfied: the map
must be square and all the measurements must be independent. If these
requirements are satisfied, we can invert the polynomial map (26) using al-
gorithms implemented in COSY INFINITY, obtaining

δxk =Mδxk
(δyi). (27)

We now replace δxk in (23) with its expression from (27), yielding

[xk] = x̂−
k +Mxk

(δyi). (28)

This map now represents the pseudo-measurement of state xk based on the
observation ỹi, so it is renamed as

[zk] = x̂−
k +Mzk

(δyi). (29)

By construction the constant part of Eq. (29) is equal to the state estimate
at step k, i.e. x̂−

k , but its statistical moments are different to those of xk,
due to the nonlinear contribution of Mzk

(δyi) (as highlighted in Fig. 1(b)).
We can now apply Eq. (7) to Taylor expansion (29) to compute the statistics
of the random variable zk and, in particular, the first two moments µzk

and
P zkzk

. The computed mean can be treated as the “predicted measure” of
the state at time tk, with measurement error defined by P zkzk

. Thus, we
can update the initial estimate and error covariance, using the least squares
method. This can be done using the Kalman filter update equations that,
applied to the current problem, read

K =P−
xkxk

(
P−
xkxk

+ P zkzk

)−1
, (30)

x̂+
k =x̂−

k +K
(
z̃k − µzk

)
, (31)

P+
xkxk

= (I −K)P−
xkxk

(I −K)
T

+KP zkzk
KT , (32)
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where x̂+
k is the updated estimate at time tk and P+

xkxk
the related updated

covariance matrix. When another measurement becomes available, we can
define the state at time tk as a new DA variable, centered in the new estimate
x̂+
k , and iterate the process. Note that z̃k is the true state-measurement at

ti mapped to time tk, which is readily available by evaluating Map (29) for
δyi = ỹi − ŷi.

We said that the polynomial map in Eq. (26) must be square in order to be
invertible. It follows that if the measurement vector has smaller dimension
than the state vector, after the first measurement is received we can not
proceed with the update as we have to wait for additional measurements
(i.e. in the optical case three observations are needed). When the number of
scalar measurements equals the dimension of the state variable, we can define
an augmented measurement vector that can be used to build Maps (25) and
(26).

Once the final estimate of the state at time tk is obtained, the statistics
of the solution can be computed at any time via propagation and DA-based
expectation evaluation.

5 Test Cases

The algorithms for IOD are run considering single-pass optical observations
of three objects as listed in Table 1.

Table 1: Test cases: orbital parameters

Test Case A B C

Orbit type GEO GTO Molniya
SSC 26824 23238 40296

Epoch JED 2457163.2824 2457167.1008 2457165.0708
a km 42143.781 24628.972 26569.833
e – 0.000226 0.699849 0.723221
i deg 0.0356 3.962 62.794
Ω deg 26.278 315.676 344.538
ω deg 42.052 240.885 271.348
M deg 72.455 13.735 347.726

The observations are all simulated from Teide Observatory, Tenerife, Ca-
nary Islands, Spain (observation code 954). The simulation windows are sum-
marized in Table 2. For all the cases 15 equally spaced optical observations
are simulated within the observation window. The spacecraft is considered
observable when its elevation is above 10 deg, it is in sunlight, and the Sun
has an elevation lower than -7 deg. As a result, different observation gaps
are considered, ranging from 360 s for the Molniya case to 2160 s for the
GEO case. The GTO object is observed before the apogee for an arc length
of approximately 20.7 deg. The average separation between observations is
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1.5 deg, with maximum and minimum values of 1.9 and 1.3 deg, respectively.
The Molniya object is observed before the apogee on an arc length of 13.4
deg. In this case the mean, maximum, and minimum observation separations
are 1, 1.1, and 0.8 deg. Finally, for the GEO case the observed arc has a
length of 127.4 deg with uniformly spaced observations.

For all the cases the central observations, i.e. observation ID 7, 8, and
9, are used for the IOD; thus, x̂8 = (r̂8, v̂8) and P−

x8,x8
are the output of

the IOD problem. The remaining observations are used for the update of
x̂8 and P−

x8,x8
. Finally, pertaining to the accuracies, we consider Gaussian

measurement noises with standard deviation of 0.5 arcsec.

Table 2: Test cases: observation windows

Test Case Observation Window ∆t σα,δ
yr mo day0 dayf hr0 hrf hr arcsec

A 2015 MAY 22 23 21.000 05.400 0.600 0.5
B 2015 JUN 02 02 03.550 05.580 0.145 0.5
C 2015 MAY 22 22 22.000 23.400 0.100 0.5

All simulations are run on a MacBook Air with a 1.8 GHz Intel i5 CPU
and 4 GB RAM.

5.1 DA-based angles-only IOD

The IOD algorithm is run 100 times for each of the three test cases described
in Tables 1 and 2. The observation geometries are described in Figures 2(a),
2(c), and 2(e). For all the cases 6-th order computations are carried out.
The DA-based IOD algorithm converges in all cases in, on average, three
iterations (convergence is achieved when the Euclidean norm of the velocity
vector discontinuity at the central observation is less than 1× 10−12 km/s).
In all cases, the real solutions of the Gauss’ 8th-degree polynomial are taken
as first guesses for the unknown slant ranges.

The result of the DA-based IOD algorithm is the Taylor polynomial [x8]
(see Eq. (21)) that maps the observation uncertainties into uncertainties in
the state space. This map is employed to compute the starting state estimate
x̂−
8 and covariance P−

x8x8
, evaluating the expectation of the monomials by

assuming Gaussian statistics for measurement noise. Figures 2(b), 2(d), and
2(f) show the absolute value of the observation residuals associated to x̂−

8

(normalized by the observations standard deviation) at the different obser-
vation epochs and for all the 100 simulations. As expected the residuals are
minimal at the epochs of the IOD (i.e. ID 7, 8, and 9), whereas they steeply
increase far from the central observations. In addition, note that x̂−

8 does
not exactly satisfy the IOD, as it is acually the constant part of the associ-
ated Taylor polynomial, [x8], that does it (with an accuracy that depends on
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the threshold selected for algorithm convergence). The maximum differences
between the constant part of the map and the computed mean are given in
the first two columns of Table 3, where the contributions are split in position
and velocity components. It is apparent that the nonlinearities play a minor
role for the test case A, and this is confirmed by the fact that the residuals
are minimal at observations 7, 8, and 9 for this test case (see Figure 2(b)).

In all the cases the estimated covariance P−
x8x8

is stretched along the
line of sight directions as shown in the zoomed portions of Figures 2(a),
2(c), and 2(e). Higher nonlinearities affect test cases B and C, for which the
uncertainty set is much more stretched. To quantify this, the maximum of
the square root of the position and velocity covariance matrix eigenvalues
(indicated with maxσr8 and maxσv8

) are reported in Table 3.

Table 3: IOD: uncertainty set description.

Test Case max ||r8 − r̂−
8 || max ||v8 − v̂−

8 || maxσr8 maxσv8

km m/s km m/s

A 0.045 0.003 26.528 1.976
B 7.579 0.349 340.993 14.611
C 22.435 1.312 573.765 30.675

5.2 DA-based IOD update

The results obtained by applying the updating scheme presented in Sec. 4
are presented in this section. 100 simulations are run for each test case and
all the computations are carried out at order 6, as for the DA-based IOD.

As we are considering 15 equally spaced optical observations, the maxi-
mum number of iterations (including the IOD using observations 7, 8, and
9) is 5. The updating scheme is stopped whenever the maximum number of
iteration is reached or when the variation in the estimated state gets bigger
than 5 times the maximum eigenvalues of the starting state covariance (this
is considered as an anomaly in the updating scheme).

For all the cases a set of 4 plots is presented. In the first one the difference
between the current state estimate and the true state (indicated as ||r̂8−r∗8||
for position and ||v̂8−v∗8|| for velocity) is plotted as function of the iteration
number. Mean, maximum and minimum values for the considered 100 simu-
lations are shown with different markers. In the second figure the maximum
(over the 100 simulations) of the maximum position and velocity eigenvalues
of the estimated covariance matrix are plotted as a function of the iteration
number. Thus, the first two figures can be used to extract informations on
state accuracy estimation and size of the estimated final uncertainty set. The
third and fourth figures are about the observations residuals. More specifi-
cally, in the third figure the evolution of the mean residuals with the iteration
number is highlighted using markers in gray scale (black markers for the last
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(a) Test case A: geometry
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(b) Test case A: residuals

(c) Test case B: geometry
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(d) Test case B: residuals

(e) Test case C: geometry
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(f) Test case C: residuals

Fig. 2: Observation geometry and residuals
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(a) Estimation error
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(b) Estimated covariance size
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(c) Observation residuals convergence
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(d) Final observation residuals

Fig. 3: Test case A

iteration); whereas in the fourth figure we plot the mean, maximum, and
minimum values of the residuals (absolute value) at the fifth iteration only.

Figures 3, 4, and 5 show all a similar behaviour of the relevant quantities.
The accuracy of the estimation improves with iteration number, and the
size of the estimated state covariance reduces accordingly. The observation
residuals decrease and become more homogeneous with the iteration number.
More accurate predictions are obtained for the Test Case A, thanks to both
a longer observed arc and lower eccentricity of the orbit. In this case all the
100 simulations reach the 5-th iteration, with a mean final average estimation
error of 0.164 km on position and 0.022 m/s on velocity. These errors increase
to 3.353 km and 0.439 m/s for Test Case B, and to 8.520 km and 1.481 m/s
for the Test Case C. Note that the 96% of the simulations reach the fifth
iteration for the GTO case, and this number further reduces to 90% for the
Molniya orbit.

Finally, in Figure 6 the results of 100 simulations using first order Taylor
expansions are shown to highlight the effect of nonlinearities. It can be no-
ticed that for the GEO case (Figure 6(a) and 6(b)) the updating algorithm is
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(a) Estimation error
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(b) Estimated covariance size
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(c) Observation residuals convergence
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(d) Final observation residuals

Fig. 4: Test case B

still convergent (although the average estimation error doubles with respect
to 6-order expansion) as both the estimation errors and the residuals decrease
with the iteration number. This is not the case for both Test Case B and C,
where the estimation errors and residuals decrease only up to the third iter-
ation (i.e. when nine optical observations are used). Thus, in these cases a
linear approximation is not sufficiently accurate in mapping, to the central
epoch, the observations taken at the boundary of the visibility windows.

6 Conclusions

In this paper the problem of dealing with observation uncertainties in IOD
is addressed. A fully nonlinear method for IOD is implemented based on the
high order Taylor expansions delivered by DA computation. The method,
based on the solution of two Lambert’s problems, delivers the solution of
the IOD problem and nonlinearly maps uncertainties from the observations
space to the state space already when the minimum (three) number of op-
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(a) Estimation error
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(b) Estimated covariance size
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(c) Observation residuals convergence
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(d) Final observation residuals

Fig. 5: Test case C

tical observations are considered. The algorithm converges for all the cases
considered within, on average, three iterations. The average computational
time is 3.6 s when 6-th order computations are carried out.

A linear scheme for updating the state’s first two statistical moments is
proposed when more optical observations are available in a single passage.
This scheme is based on the generation of full state pseudo-observations at
a common epoch, taking advantage of polynomial inversion tools available
in DA. The required expectation are computed on high order Taylor polyno-
mials, limiting the Gaussian assumption to the observation noises only. The
updating scheme is shown to improve the accuracy of state estimation when
short-dense observation arcs are available. The average computational time
for the updating scheme is 1.91 s at order 6.

In the present work simplified Keplerian dynamics are used. The algo-
rithms can be easily extended to arbitrary dynamics by using the DA-based
tools for the Taylor expansion of the solution of ODEs (see ? for details) and
by replacing the Lambert’s solver with a DA-based algorithm for expanding
the solution of two-point boundary values problems (as illustrated in ?). The
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(a) Estimation error (Test Case A)
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(b) Observation residuals convergence
(Test Case A)
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(c) Estimation error (Test Case B)
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(d) Observation residuals convergence
(Test Case B)
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(e) Estimation error (Test Case C)
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(f) Observation residuals convergence
(Test Case C)

Fig. 6: Update results for 1st order computations
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authors plan to apply the algorithms to real observations including the case
of short-dense radar observations.
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