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LOW-THRUST COLLISION AVOIDANCE DESIGN FOR LEO
MISSIONS WITH RETURN TO NOMINAL ORBIT

Andrea De Vittori*, Gabriele Dani†, Pierluigi Di Lizia‡, and Roberto Armellin §

This work investigates the design of optimal and computationally efficient low-
thrust Collision Avoidance Maneuvers (CAMs) in the LEO regime. A potential
collision is prevented thanks to two different CAM policies. The first one enforces
a certain threshold on the Probability of Collision (PoC) at the Time of Closest
Approach (TCA); then, the spacecraft targets a point belonging to its nominal
orbit. For this purpose, the conjunction dynamics of the two objects are presented
in a Cartesian reference system and then projected onto the B-plane, centred on
the secondary object. The second method forces the satellite to match the original
Keplerian parameters, leaving out the true anomaly.

INTRODUCTION

The number of artificial objects around the Earth, no longer functional for operative applications,
has gradually built up in the form of high-speed clutter that is on the verge of jeopardizing the future
of space activity. Among all orbital regimes, LEO is the most congested region for remote sens-
ing, imaging, and commercial applications due to its close proximity to the Earth. The intensive
usage has transformed it into a bullet depository with an unabated proliferation of rocket bodies,
paint flecks, mission-related payloads, and fragments from previous collisions. In 2009, the Euro-
pean Space Agency (ESA) started the Space Situational Awareness (SSA) Program to let Europe
acquire the independent capability to watch and monitor objects and natural phenomena that could
harm both on-ground and on-orbit facilities (for further information check1). To avoid a cascad-
ing effect, one of the provided services is preventing in-space impacts through a careful choice of
orbits placement and by performing Collision Avoidance Maneuvers (CAMs). Within this frame-
work, once satellite controllers receive an alert, they wisely design CAMs targeting a safeguard
limit for a target Probability of Collision (PoC) that does not affect fuel consumption too much.
Current CAM routines are specifically conceived for impulsive propulsion systems present in the
vast majority of orbiting assets. With the rise of low-thrust technology, bespoke CAM policies
should optimally decide when to switch on the engine to act safely in close encounters. Further-
more, CAMs decision-making has to progressively migrate from on-ground planning to an onboard
implementation to alleviate the workload on operators owing to an ever-growing number of active
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satellites. Given the limited computational power, satellites should lean on lightweight algorithms
to make all this possible. Another vitally important aspect is commanding a post-CAM maneuver
to ease the spacecraft reenter to its nominal orbit.
The literature regarding the optimization of impulsive collision avoidance practices is the most thor-
ough; however, over the last years, researchers have deepened the theory behind low-thrust CAMs.
Studies on low-thrust optimization methods include the semi-analytical method developed by Reiter
et al.2 for rapid collision avoidance, supposing an optimal radial thrust, but it is valid just in prox-
imity of conjunction. In 2022, De Vittori3 excogitated an analytic solution for the energy-optimal
CAM imposing PoC at TCA as the terminal constraint, in cartesian coordinates and B-plane dy-
namics formulation. The EOCP policy serves as a first-attempt solution for a Fuel Optimal CAM
shaped by a bang-bang acceleration at the expense of a time-consuming algorithm. More semi-
analytical methods were proposed in;4 this approach harnesses average dynamics maximizing the
miss distance with the assumption of continuous tangential thrust. Bombardelli and Hernando-
Ayuso5 investigated the problem of optimum low-thrust collision avoidance between two objects in
circular orbits; the thrust vector of the maneuvered satellite, applied continuously for a given time
span, is held constant in magnitude and only the orientation can be adjusted. The optimal control is
written in B-plane coordinates to lessen the dimension of the resulting Two Boundary Point value
Problem (2PBVP) to only two with a constant costate vector. Martinez Chamarro et al.6 present
two ways to compute low-thrust CAMs; the first approximates a bang-bang structure by applying a
smoothing approach to an EOP continuous solution. In the second method, the maneuver design de-
rives from a convex optimization problem. In 2012, Lee developed a collision avoidance maneuver
for LEO and Geostationary Earth Orbit (GEO) satellites maintained in a keeping area.7 GA-based
optimization scheme gets both the maneuver start time and the ∆v to reduce collision likelihood
with uncontrolled space objects or debris. The limitation of GA resides in the numerical effort.
The state-of-art CAM optimization does not cover the reentry to the nominal orbit in the overall ma-
neuver decision-making. In this context, the work initially addresses CAM in LEO as an (EOCP)
leveraging a Three-Point Boundary Value Problem (3PBVP) formulation stemming from8 for em-
bedded CAM and SK in GEO. The underlying idea is to devise a CAM that either fixes the terminal
state or a set of keplerian elements, leaving free the final true anomaly, after TCA through motion
linearization.

FUNDAMENTALS

This section defines the theoretical knowledge needed for the analytical CAM formulation.

Conjunction definition

The CAM design process starts evaluating the short-term encounter between a satellite and debris.
The controllable object (called primary object) is described by a state xp = [rp;vp] while debris
(secondary object) is identified by the state xs = [rs;vs]. In this equations, ri and vi are the
position and the velocity of the centre of mass of the single object measured in a generic reference
ℜ̂. To compute the collision probability, a useful coordinate system is the B-Plane. The origin of
this frame lies at the centre of the secondary object at the time of closest approach as depicted in
Fig. 1, with the following axes direction:

uξ =
vp × vs

||vp × vs||
, uη =

vp − vs

||vp − vs||
, uζ = uξ × uη (1)
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Figure 1: BPlane representation9

Consequently, the position vector in the B-Plane reference frame is identified as b3D = [ξ, η, ζ]⊤.
The rotation matrix to pass from the inertial reference to the B-Plane one is defined as:

Rb,3D = [uξ,uη,uζ ]
⊤ (2)

Additionally, the projection on the η axis is given by:

Rb,2D = [uξ,uζ ]
⊤ (3)

Consequently, the 2D position vector in the B-Plane is defined as b = [ξ, ζ]⊤.

Chan’s PoC model

PoC between the primary and secondary objects experiencing a short-term conjunction can be
obtained by integrating the relative position probability density function over a sphere of radius
RA (i.e. the hard body sphere given by the summed primary and secondary radii) at TCA. This
assumption is made up for the lack of information about attitude and geometry, especially for the
secondary object.10 Assuming that the relative probability distribution function is Gaussian, an
approximated collision probability is obtained with the Chan’s method of equivalent cross-sectional
areas:

PoC(u, v) = e−
v
2

∞∑
m=0

vm

2mm!

[
1− e−

u
2

m∑
k=0

uk

2kk!

]
(4)

Where u is the ratio of the impact cross-sectional area to the 1σ B-Plane covariance ellipse area:

u =
s2A

σξσζ
√
1− ρ2ξζ

(5)

and v is the Squared Mahalanobis Distance (SMD):

v = (rp − rs)
⊤R⊤

b,2DC
−1Rb,2D(rp − rs) =

= b⊤
p C

−1bp

(6)
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where: C is the covariance matrix, and bp is the primary object position relative to the secondary
object in the B-Plane framework.

State Transition Matrix

Given the non-linear dynamics described in the previous section, the STM labelled as Φ allows
to map an arbitrary state variation at a certain time t0 to a final one at tf according to the following
equation:

δxf = Φδx0 (7)

For time-varying systems, Φ(t, t0) can be found by integrating the following equation:

Φ̇(t, t0) = A(t)Φ(t, t0), Φ(t0, t0) = I (8)

where Φ(t0, t0) is the initial condition and A(t) is the state matrix obtained by means of a lineariza-
tion of the dynamical system f(x, t) around the nominal trajectory xn:

A =
∂f(x, t)

∂x

∣∣∣∣
xn

(9)

ENERGY-OPTIMAL LEO CAM DESIGN

The LEO design comprises two control strategies. The Point to Point (PTP) in ECI formalism
fixes the final state over the nominal trajectory after CAM for a specified time. The Point to Or-
bit (PTO) lets the EOCP choose the optimal reentry point by targeting just five of the six orbital
elements.

Point-to-Point with intermediate CAM constraint

The main objective of CAMs is to minimize both PoC and propellant consumption through the
definition of a cost function J :

J := νΨ(tca,x(tca)) +

∫ tf

t0

1

2
ac

Tacdt (10)

Where:

Ψ(tca,x(tca)) = SMD(r(tca))− SMD = 0 (11)

Ψ represents the interior point equality constraint on the SMD at the time of the closest approach
(tca). Thanks to Pontryiagin’s maximum principle, the optimal control solution results from the
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following Multi-Point Boundary Value Problem (MPBVP) set in Keplerian dynamics:

ṙ = v

v̇ = −mu

r3
r− λv

λ̇r =
µ

r3
λv − 3µrTλv

r5
r

λ̇v = −λr

x(t0) = x0

x(tca−) = x(tca+)

ν
∂Ψ

∂x(tca)
− λT (t−ca) + λT (t+ca) = 0

x(tf ) = xf

Ψ(tca) = 0

(12)

The problem turns into finding the initial costate λ0 and the adjoined multiplier ν. xf is the state
on the ballistic orbit at tf . The solution scheme subdivides the trajectory into two intervals [t1; tca]
and [tca; tf ] because the interior point constraint applies at TCA. For an analytical solution, the two
trajectories are linearized with respect to the Keplerian unperturbed motion by virtue of the STM.

{
Φ̇(t) = A(t)Φ(x(t0), t)

Φ(x(t0), t0) = I
(13)

Where:

A =


03×3 I3×3 03×3 03×3

3µ
r5
rrT − µ

r3
I3×3 03×3 03×3 −I3×3

03×3 03×3 03×3
µ
r3
I3×3 − 3µ

r5
rrT

03×3 03×3 −I3×3 03×3


The linearization of the first arc brings to the following system of equations:

δrca
δvca

δλ−
rca

δλ−
vca

 =


Φ11 Φ12 Φ13 Φ14

Φ21 Φ22 Φ23 Φ24

Φ31 Φ32 Φ33 Φ34

Φ41 Φ42 Φ43 Φ44



δr0
δv0

δλr0

δλv0

 (14)

Rearranging the first two rows, starting from the initial conditions δr0 = δv0 = 0, the initial
co-state expresses as a function of the perturbation of the state at TCA.{

δλr0 = Dδrca +Eδvca

δλv0 = Mδrca +Bδvca
(15a)

M = −BΦ23Φ13
−1 B = [Φ24 −Φ23Φ13

−1Φ14]
−1 (15b)

D = [Φ13
−1 −Φ13

−1Φ14M] E = −Φ13
−1Φ14B (15c)
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The symbol δ for the co-state variables is redundant because the variation is null along the un-
maneuvered trajectory. Consequently, this symbol is now on omitted for conciseness.

Eqs. 15a come in handy to make the costates at TCA- dependent on the state at conjunction:{
λ−
rca

= [Φ33D+Φ34M]δrca + [Φ34B+Φ33E]δvca

λ−
vca

= [Φ43D+Φ44M]δrca + [Φ44B+Φ43E]δvca

=⇒

{
λ−
rca

= Fδrca +Gδvca

λ−
vca

= Hδrca + Lδvca

(16a)
F = [Φ33D+Φ34M] G = [Φ34B+Φ33E] (16b)

H = [Φ43D+Φ44M] L = [Φ44B+Φ43E] (16c)

For the secondary arc, the state variables and the velocity co-state are continuous at TCA; the
interior point constraint imposes a discontinuity on the position co-state. The final target point lies
in the un-maneuvered Keplerian orbit. For this reason, the perturbation of the final state needs to be
assumed as δrf = δvf = 0


δrf
δvf

λrf

λvf

 =


Φ̃11 Φ̃12 Φ̃13 Φ̃14

Φ̃21 Φ̃22 Φ̃23 Φ̃24

Φ̃31 Φ̃32 Φ̃33 Φ̃34

Φ̃41 Φ̃42 Φ̃43 Φ̃44



δrca
δvca

λ+
rca

λ+
vca

 (17)

Recalling the co-state discontinuity expressed in the boundary conditions of Eq. 12, and substi-
tuting the expression of the SMD constraint derivative:

{
λ+
rca

= λ−
rca

− 2νR2b
TC−1R2bδr

m
imp

λ+
vca

= λ−
vca

(18)

Where δrmimp = rmca − rs is the position vector from the secondary object at TCA to the primary
in cartesian coordinates.

Working on the first two vectorial equations of system 17 and substituting Eq. 16a and Eq. 18 it
reads:

Ñδrca + P̃δvca − νQ̃R2bδr
m
imp = 0 (19a)

Ñ = [Φ̃11 + Φ̃14H+ Φ̃13F]

P̃ = [Φ̃12 + Φ̃14L+ Φ̃13G]

Q̃ = 2Φ̃13R2b
TC−1

(19b)

And:
Nδrca +Pδvca − νQR2bδr

m
imp = 0 (20a)

N = [Φ̃21 + Φ̃24H+ Φ̃23F];

P = [Φ̃22 + Φ̃24L+ Φ̃23G];

Q = 2Φ̃23R2b
TC−1

(20b)
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Eq. 20a can be solved for δvca and substituted in Eq. 19 in order to find the expression of δrca
as a function of the position vector δrmimp and the multiplier ν:

δrca = νS−1TR2bδr
m
imp (21a)

S = [Ñ− P̃P−1N] T = [Q̃− P̃P−1Q] (21b)

The last step is combining the preceding relations with the SMD constraint at TCA. This can be
done by adding and subtracting rs on the left term and then premultiplying Eq. 21a by R2b. This
operation transfers the problem to B-plane.

R2b[r
m
ca − rs − rca + rs] = νR2bS

−1TR2bδr
m
imp (22a)

R2b[δr
m
imp − δrimp] = νR2bS

−1TR2bδr
m
imp (22b)

bm
imp − bimp = νR2bS

−1Tbm
imp (22c)

The previous equation can be inverted to retrieve an expression just function of the un-maneuvered
position vector in B-plane.

bm
imp = [I− νU]−1bimp (23a)

U = R2bS
−1T (23b)

Finally, with the following linear algebra relation:

[I− νU]−1 =
1

det(I− νU)
[I− νdet(U)U−1] (24)

And applying the constraint on the SMD, a fourth-degree-equation solves analytically with unknown
ν:

ν2bimp
TZTC−1Zbimp − νbimp

T [ZTC−1 +C−1Z]bimp =

α2SMD − bimp
TC−1bimp

(25a)

α = det(I− νU) Z = det(U)U−1 (25b)

Among the four solutions of Eq. 25a there are two real local minima and two local maxima
(depending on the polynomial coefficients) in terms of equivalent ∆v. Once the value of ν is
known, the initial costates come straight forward by following backwards the algorithm.

Point-to-Orbit with intermediate CAM constraint

The objective is to minimize the following functional:

J := νΠ(tca,x(tca)) +

∫ tf

ti

1

2
ac

Tacdt (26)

where Π represents again the interior point equality constraint on the SMD.
The main difference compared to the previous method lies in the terminal constraints. In fact, to fix
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the orbit reentry, one sets five orbital elements leaving free the final true anomaly.
Pontryagin’s maximum principle leads to the definition of the following Three Point BVP:

ẋ = f(x,ac)

λ̇ = −
[
∂f

∂x

]T
λ

x(t0) = x0

x(tca−) = x(tca+)

ν
∂Π

∂x(tca)
− λT (t−ca) + λT (t+ca) = 0

x′(tf ) = x′
f

λθ(tf ) = 0

Π(tca) = 0

, where : x′ =


a
e
i
Ω
ω

 (27)

Similarly to the previous derivation, the problem comes down to computing the initial co-state and
the multiplier ν. The objective is to find the expression of the co-state at TCA as a function of the
state perturbation at the same instant:[

δxca−

λca−

]
=

[
Φxx Φxλ

Φλx Φλλ

] [
δx0

λ0

]
(28a)

λca− = ΦλλΦxλ
−1δxca− (28b)

In view of the second part, it will be useful decompose Eq. 28b as done with the state vector in
Eq. 27:

λ′
ca− = Eδx′

ca− +wθca− (29a)

λθca−
= gδx′

ca− + Pθca− (29b)

Where:

λ′ =


λa

λe

λi

λΩ

λω

 ΦλλΦxλ
−1 =

[
E w
g P

]
(30)

For this particular problem, the analytic solution needs to introduce a zero-order Taylor expansion
linked to the co-state discontinuity equation.

∂Π

∂x(tca)
= φ(xca) ≈ φ(xref (tca)) = φ (31)

The discontinuity equation can be split as:

λ′
ca+ = λ′

ca− − νφ′

λθca+
= λθca−

− νφθ
(32)
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The previous decomposition of the first five orbital elements and the last co-state variable is
crucial for the terminal boundary conditions.

δx′
f

δθf
λ′
f

λθf

 =


Φ̃x′x′ Φ̃x′θ Φ̃x′λ′ Φ̃x′λθ

Φ̃θx′ Φ̃θθ Φ̃θλ′ Φ̃θλθ

Φ̃λ′x′ Φ̃λ′θ Φ̃λ′λ′ Φ̃λ′λθ

Φ̃λθx′ Φ̃λθθ Φ̃λθλ′ Φ̃λθλθ



δx′

ca

δθca
λ′
ca+

λθca+

 (33)

The STM and the co-state discontinuity are to reframe the state perturbation at TCA.

δθca = ν
M

L
(34a)

δx′
ca = νB−1n (34b)

The two equations can be coupled to obtain:

δxca = νh h =

[
B−1n

M
L

]
(35)

x(tca) = xref (tca) + νh (36)

Where:

B = Φ̃x′x′ + Φ̃x′λ′E+ Φ̃x′λθ
g d = Φ̃x′θ + Φ̃x′λ′w + P Φ̃x′λθ

(37a)

M = Φ̃λθλ′φ′ + Φ̃λθλθφθ − b̃
[
B−1

(
Φ̃x′λ′φ′ + Φ̃x′λθ

φθ

)]
(37b)

L = D̃ − b̃(B−1d) (37c)

b̃ = Φ̃λθx′ + Φ̃λθλ′E+ Φ̃λθλθg D̃ = Φ̃λθθ + Φ̃λθλ′w + P Φ̃λθλθ (37d)

n = Φ̃x′λ′φ′ + Φ̃x′λθ
φθ −

M

L
d (37e)

Defining ρ(x) as the function to pass from keplerian elements to position vector in ECI coordinates
with a first-order Taylor approximation the constraint expression results:

[ρ(xca)− rs(tca)]
T Q [ρ(xca)− rs(tca)] = SMD (38)

Where:
Q = R2b

TC−1R2b (39)

This equation has no closed-form solution. For this reason a first-order Taylor expansion of ρ(x)
is used:

ρ(xca) ≈ rp(tca) + νJh (40)

with:

J =
∂ρ(x)

∂x

∣∣∣∣
xref

(41)

The polynomial in ν is then:

[rp(tca) + νJh− rs(tca)]
T Q [rp(tca) + νJh− rs(tca)] = SMD (42)
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RESULTS

Figure 2: Conjunction test case.

The methods presented so far are applied to a test case extracted from,11 a database of 2,170
conjunction cases taken from the ESA Collision Avoidance Challenge.12 A representation of the
collision can be found in Figure 2. Table 1 reports the position and velocity vectors of the primary
and secondary spacecraft at the conjunction in ECI frame, the PoC, the SMD and the miss distance
d. The combined cross-sectional radius of the spacecraft is sA = 29.7 m. The Keplerian elements
of the two orbits are computed and displayed in Table 2.
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Table 1: Test case conjunction data.

r⃗p[km] [2.3305, -1103.7, 7105.9]⊤

r⃗s[km] [2.3335, -1103.7, 7105.9]⊤

v⃗p [km/s] [-7.4429, -6.1373e-04, 3.9514e-03]⊤

v⃗s [km/s] [7.3537, -1.1428, -0.19825]⊤

PoC 1.3604e-01
SMD 0.87166
d [km] 0.0432

Table 2: Test case orbital elements, in order: semi-major axis, eccentricity, inclination, Right As-
cension of the Ascending Node (RAAN), the argument of the periapsis, true anomaly.

a e i Ω ω θ

Op 7186.7 km 0.00064 98.83 ◦ 0 ◦ 289.38 ◦ 160.60 ◦

Os 7190.2 km 0.0024 81.28 ◦ 170.93 ◦ 184.41 ◦ 266.99 ◦

The position covariance matrices of the two satellites, expressed in their respective ECI reference
frame, are:

C⃗p =

 0.9317 −2.6234 0.2360
−2.6234 1778.0 −0.9331
0.2360 −0.9331 0.1917

 · 10−4 km2 (43)

C⃗s =

 6.3466 −19.6229 0.7077
−19.6229 0.0820 11.3982
0.7077 11.3982 2.5103

 · 10−4 km2 (44)

The corresponding combined covariance matrix in B-plane coordinates is:

C⃗ =

[
7.21756 −0.7580
−0.7580 51.9201

]
· 10−4 km2 (45)

In the following section, the methods are compared using a dynamical model which only considers
Keplerian motion, as expressed in Eq. 12.
All the simulations presented in this dissertation are run with an Intel(R) Core(TM) i7-10700 CPU
processor with 16 GB of Ram Memory.

The results reported in this section with a collision probability PoC = 10−6 leads to a threshold
of SMD = 26.9016.

Point-to-Point with intermediate CAM constraint

In Fig. 3, the object TCA always sticks to the iso-probability ellipse. The transfer time spans
between 2 and 4 periods. In the plots shown hereafter, tback (from one to two orbital periods)
embodies the time range between the initial maneuvering point to TCA and tafter (from one to two
orbital periods as well) from TCA to the reentry time. The same plot for tback is not displayed
inasmuch as the b-plane points would be the same apart from colouring.
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Figure 3: B-plane representation for the EOP PTP solution.

Looking at Fig. 4, the ∆v spent is reported as a surf plot with a grid of 15 by 15 elements.
Planning a CAM in advance (for tback ≈ 2 and tafter ≈ 2) does not imply a ∆v reduction because
the primary is constrained to land on a target point potentially not optimal for that time range.
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"
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Figure 4: ∆v surface for the EOP PTP solution.

When it comes to the acceleration components in the RTN frame, Fig. 5 suggests that an in-plane
maneuver works best. Indeed, in the literature, CAM alone is optimally executed with tangential
and radial firings. On top, the costate discontinuity condition at TCA implies an abrupt change in
the component-wise slope.
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Figure 5: PTP Acceleration components in RTN for Tback = 2 periods and Tafter = 2 periods

Finally, Fig. 6 evaluates the terminal position error. Varying tback or tafter does not affect
the solution’s accuracy. The offset is just decimeters, well below the average spacecraft position
uncertainty.

Figure 6: Final position error for the PTP strategy

The computational time is reported for PTP in Fig. 7. It encompasses the STMs integration (the
most expensive operation) and the procedure to get and solve the polynomial spanning across all the
roots. The numerical effort of the analytic solution is strongly influenced by the propagation time,
as seen with an upward trend for higher tback and tafter. Given the attained performance, such a
solution strategy may apply to large-scale simulations or may provide a good guess for advanced
numerical methods including mission constraints. The pipeline has been developed in Matlab; a
compiled C++ version would certainly lessen this figure of merit.
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Figure 7: EO PTP computational time
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Point-to-Orbit with intermediate CAM constraint

Position-wise on the Bplane (see Fig. 8), the singled-out points slightly move leftward compared
to Fig. 3 still attaining the same accuracy level.
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Figure 8: B-plane representation for the EOP PTO solution.

Moving on to the maneuver cost, letting the true anomaly free makes the ∆v almost halve for
some combinations of tback and tafter if likened to Fig. 4.
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Figure 9: ∆v surface for the EOP PTO solution.

Figure 10, with the acceleration magnitude profile, corroborates ∆v efficiency of the PTO solu-
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tion: on average, it has a lower mean acceleration level.

Figure 10: Acceleration magnitude comparison between PTP and PTO for Tback = 2 periods and
Tafter = 2 periods

The PTO strategy confirm the trend in Fig. 11 that an in-plane maneuver is beneficial for fuel
savings.

Figure 11: PTO Acceleration components in RTN for Tback = 2 periods and Tafter = 2 periods

The PTO case consumes less for the same PTP time span at the expense of a delayed reentry in
true anomaly terms. As can be seen in Fig. 12 the gap is almost negligible unless having constraints
on the spacecraft return point.

16



Figure 12: θdelay difference.

The computational burden for PTO is shown in Fig. 13. It shares similar considerations to the
PTP counterpart in terms of overall achieved performance.

Figure 13: PTO computational time
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CONCLUSIONS

In this work, pioneering CAM strategies with adjoined return to initial spacecraft orbit present
a step forward for in-orbit maneuver planning. Comparing the equation of motions of the ECI
formalism with the Gauss interplanetary ones, it is noticeable how playing with the true anomaly
can almost halve the ∆v for the same firing time. The output control is computed in a fraction of
a second, making the algorithm look even brighter for future onboard implementation. As a next
step, the Energy Optimal Control Problem (EOCP) guess can be further processed to design more
operative scenarios where satellites follow typical bang-bang structures that are easier to execute
and grant an extra fuel mass savings.

REFERENCES
[1] ESA, “SSA Programme overview,” 2022.
[2] J. A. Reiter and D. B. Spencer, “Solutions to rapid collision-avoidance maneuvers constrained by mis-

sion performance requirements,” Journal of Spacecraft and Rockets, Vol. 55, No. 4, 2018, pp. 1040–
1048.

[3] A. De Vittori, M. Palermo, P. Di Lizia, and R. Armellin, “Low-Thrust Collision Avoidance Ma-
neuver Optimization,” Journal of Guidance, Control, and Dynamics, Vol. 45, 08 2022, pp. 1–15,
10.2514/1.G006630.

[4] J. Gonzalo Gomez, C. Colombo, and P. Di Lizia, “A semi-analytical approach to low-thrust collision
avoidance manoeuvre design,” 70th International Astronautical Congress (IAC 2019), 2019, pp. 1–9.

[5] J. Hernando-Ayuso and C. Bombardelli, “Low-Thrust Collision Avoidance in Circular Orbits,” Journal
of Guidance, Control, and Dynamics, 2021, pp. 1–13.

[6] Martı́nez Chamarro, C. Belmonte Hernandez, and R. Armellin, “Design of Collision Avoidance Maneu-
vers using Optimal Control Theory and Convex Optimization,” 31st Space Flight Mechanics Meeting,
2021.

[7] S.-C. Lee, H.-D. Kim, and J. Suk, “Collision Avoidance Maneuver Planning Using GA for LEO and
GEO Satellite Maintained in Keeping Area,” International Journal of Aeronautical and Space Sciences,
Vol. 13, 2012, pp. 474–483.

[8] A. Cantoni, “Numerically Efficient Methods ForLow-Thrust Collision Avoidance Manoeuvres Design
in GEO Regime,” 73rd International Astronautical Congress (IAC),Paris, France, 18-22 September
2022, 09 2022, pp. 1–12.

[9] C. Bombardelli, “Analytical formulation of impulsive collision avoidance dynamics,” Celestial Me-
chanics and Dynamical Astronomy, Vol. 118, 11 2013, pp. 77–, 10.1007/s10569-013-9526-3.

[10] J. Hernando-Ayuso and C. Bombardelli, “Low-Thrust Collision Avoidance in Circular Orbits,” Journal
of Guidance, Control, and Dynamics, Vol. 44, May 2021, pp. 983–995, 10.2514/1.g005547.

[11] R. Armellin, “Github, https://github.com/arma1978/conjunction/,”
[12] T. Uriot, D. Izzo, L. Simoes, R. Abay, N. Einecke, S. Rebhan, J. Martinez-Heras, F. Letizia, J. Siminski,

and K. Merz, “Spacecraft Collision Avoidance Challenge: design and results of a machine learning
competition,” arXiv preprint arXiv:2008.03069, 2020.

18

https://github.com/arma1978/conjunction/

	Introduction
	Fundamentals
	Conjunction definition
	Chan's PoC model
	State Transition Matrix

	Energy-Optimal LEO CAM Design
	Point-to-Point with intermediate CAM constraint
	Point-to-Orbit with intermediate CAM constraint

	Results
	Point-to-Point with intermediate CAM constraint
	Point-to-Orbit with intermediate CAM constraint

	Conclusions

