93 research outputs found

    Multimodale Computertomografie: moderne Bildgebung zur Erkennung von SchlaganfÀllen

    Get PDF
    Die moderne multimodale Computertomografie (CT) beinhaltet das Schichtröntgen des Gehirns (native CT), die Darstellung der hirnversorgenden Arterien (CT-Angiografie) und die Messung der Hirndurchblutung (CT-Perfusion). Mit Hilfe dieser Untersuchungstechnik kann bei Patienten mit akutem Schlaganfall rasch die Ursache der plötzlich eingesetzten Symptome beleuchtet werden: Liegt eine GefĂ€ĂŸobstruktion oder eine Blutung in das Gehirn vor? Wie ausgedehnt ist die Durchblutungsstörung und wie viel Hirngewebe ist bereits beschĂ€digt bzw. vom Untergang bedroht? Anhand dieser Informationen kann sofort eine spezifische Therapie eingeleitet werden, die es ermöglicht, die Patienten vor dauerhafter schwerer Behinderung zu bewahren bzw. die Prognose schon frĂŒh abzuschĂ€tzen.Computed tomography (CT), including CT perfusion imaging and CT angiography, has the capacity to assess stroke pathology on a functional and morphological level and can thus provide important information about patients with acute stroke. It excludes brain haemorrhage, assesses the extent of perfusion deficit, the extent of ischemic damage, and the site and type of arterial obstruction. Ischemic brain tissue below the blood flow level of structural integrity takes up water immediately and causes a decrease in x-ray attenuation. Computed tomography thus has the specific advantage of being able to identify the brain tissue which is irreversibly injured. If CT can exclude major ischemic damage in acute stroke patients, reperfusion strategies may rescue brain function and prevent disability

    Multimodale Computertomografie: moderne Bildgebung zur Erkennung von SchlaganfÀllen

    Get PDF
    Die moderne multimodale Computertomografie (CT) beinhaltet das Schichtröntgen des Gehirns (native CT), die Darstellung der hirnversorgenden Arterien (CT-Angiografie) und die Messung der Hirndurchblutung (CT-Perfusion). Mit Hilfe dieser Untersuchungstechnik kann bei Patienten mit akutem Schlaganfall rasch die Ursache der plötzlich eingesetzten Symptome beleuchtet werden: Liegt eine GefĂ€ĂŸobstruktion oder eine Blutung in das Gehirn vor? Wie ausgedehnt ist die Durchblutungsstörung und wie viel Hirngewebe ist bereits beschĂ€digt bzw. vom Untergang bedroht? Anhand dieser Informationen kann sofort eine spezifische Therapie eingeleitet werden, die es ermöglicht, die Patienten vor dauerhafter schwerer Behinderung zu bewahren bzw. die Prognose schon frĂŒh abzuschĂ€tzen.Computed tomography (CT), including CT perfusion imaging and CT angiography, has the capacity to assess stroke pathology on a functional and morphological level and can thus provide important information about patients with acute stroke. It excludes brain haemorrhage, assesses the extent of perfusion deficit, the extent of ischemic damage, and the site and type of arterial obstruction. Ischemic brain tissue below the blood flow level of structural integrity takes up water immediately and causes a decrease in x-ray attenuation. Computed tomography thus has the specific advantage of being able to identify the brain tissue which is irreversibly injured. If CT can exclude major ischemic damage in acute stroke patients, reperfusion strategies may rescue brain function and prevent disability

    A Large Web-Based Observer Reliability Study of Early Ischaemic Signs on Computed Tomography. The Acute Cerebral CT Evaluation of Stroke Study (ACCESS)

    Get PDF
    BACKGROUND: Early signs of ischaemic stroke on computerised tomography (CT) scanning are subtle but CT is the most widely available diagnostic test for stroke. Scoring methods that code for the extent of brain ischaemia may improve stroke diagnosis and quantification of the impact of ischaemia. METHODOLOGY AND PRINCIPAL FINDINGS: We showed CT scans from patients with acute ischaemic stroke (n = 32, with different patient characteristics and ischaemia signs) to doctors in stroke-related specialties world-wide over the web. CT scans were shown twice, randomly and blindly. Observers entered their scan readings, including early ischaemic signs by three scoring methods, into the web database. We compared observers' scorings to a reference standard neuroradiologist using area under receiver operator characteristic curve (AUC) analysis, Cronbach's alpha and logistic regression to determine the effect of scales, patient, scan and observer variables on detection of early ischaemic changes. Amongst 258 readers representing 33 nationalities and six specialties, the AUCs comparing readers with the reference standard detection of ischaemic signs were similar for all scales and both occasions. Being a neuroradiologist, slower scan reading, more pronounced ischaemic signs and later time to CT all improved detection of early ischaemic signs and agreement on the rating scales. Scan quality, stroke severity and number of years of training did not affect agreement. CONCLUSIONS: Large-scale observer reliability studies are possible using web-based tools and inform routine practice. Slower scan reading and use of CT infarct rating scales improve detection of acute ischaemic signs and should be encouraged to improve stroke diagnosis

    Acute transverse myelitis in a HIV-positive patient with COVID-19

    Get PDF
    Medical Department of Security and Intelligence Service of the Republic of Moldova Chisinau, the Republic of Moldova, Department of Neurology No 1, Nicolae Testemitanu State University of Medicine and Pharmacy Chisinau, the Republic of Moldova, Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Austria, Institute of Diagnostic and Interventional Neuroradiology, UniversitĂ€tsklinikum Dresden, Germany, The 75th anniversary of Nicolae Testemitanu State University of Medicine and Pharmacy of the Republic of Moldova (1945-2020)Background: Immunocompromised status keeps on being a challenge for a physician, especially in the context of the coronavirus disease – 19 (COVID-19) pandemic. The predominant clinical presentations are related to the respiratory system, but neurological manifestations are recognized increasingly. Cases of myelitis associated with the new coronavirus infection have already been published, but no cases of HIV-positive patients with myelitis and COVID-19 have been reported yet. Material and methods: This study described a clinical case of a human-immunodeficiency virus (HIV) – positive patient, who developed an acute transverse myelitis with confirmed SARS-CoV-2 infection. Results: Magnetic Resonance Imaging examination showed longitudinally extensive spinal cord abnormality, and laboratory tests confirmed SARS-CoV-2 infection. The patient responded to methylprednisolone pulse therapy, followed by oral corticosteroids and therapeutic plasma exchange. Conclusions: Continuing pandemic and the expectation that a large part of the world population will be infected suggest that the number of patients with neurological manifestations could become large. Curious neurologic constellations can appear which complicate the diagnostic process and treatment in certain patients

    Effect of IV alteplase on the ischemic brain lesion at 24-48 hours after ischemic stroke

    Get PDF
    OBJECTIVE: To determine whether alteplase alters the development of ischemic lesions on brain imaging after stroke. METHODS: The Third International Stroke Trial (IST-3) was a randomized controlled trial of IV alteplase for ischemic stroke. We assessed CT or brain MRI at baseline (pretreatment) and 24 to 48 hours posttreatment for acute lesion visibility, extent, and swelling, masked to all other data. We analyzed associations between treatment allocation, change in brain tissue appearances between baseline and follow-up imaging, and 6-month functional outcome in IST-3. We performed a meta-analysis of randomized trials of alteplase vs control with pre- and postrandomization imaging. RESULTS: Of 3,035 patients recruited in IST-3, 2,916 had baseline and follow-up brain imaging. Progression in either lesion extent or swelling independently predicted poorer 6-month outcome (adjusted odds ratio [OR] = 0.92, 95% confidence interval [CI] 0.88-0.96, p < 0.001; OR = 0.73, 95% CI 0.66-0.79, p < 0.001, respectively). Patients allocated alteplase were less likely than controls to develop increased lesion visibility at follow-up (OR = 0.77, 95% CI 0.67-0.89, p < 0.001), but there was no evidence that alteplase reduced progression of lesion extent or swelling. In meta-analysis of 6 trials including IST-3 (n = 4,757), allocation to alteplase was associated with a reduction in ischemic lesion extent on follow-up imaging (OR = 0.85, 95% CI 0.76-0.95, p = 0.004). CONCLUSION: Alteplase was associated with reduced short-term progression in lesion visibility. In meta-analysis, alteplase reduced lesion extent. These findings may indicate that alteplase improves functional outcome by reducing tissue damage. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that IV alteplase impedes the progression of ischemic brain lesions on imaging after stroke

    Sensitivity and specificity of the Hyperdense Artery Sign for arterial obstruction in acute ischemic stroke

    Get PDF
    BACKGROUND AND PURPOSE: In acute ischemic stroke, the Hyperdense Artery Sign (HAS) on non-contrast CT is thought to represent intra-luminal thrombus and therefore is a surrogate of arterial obstruction. We sought to assess the accuracy of HAS as a marker of arterial obstruction by thrombus. METHODS: The Third International Stroke Trial (IST-3) was a randomized controlled trial testing use of intravenous thrombolysis for acute ischemic stroke in patients who did not clearly meet the prevailing license criteria. Some participating IST-3 centers routinely performed CT or MR angiography (CTA and MRA, respectively) at baseline. One reader assessed all relevant scans independently, blinded to all other data; we checked observer reliability. We combined IST-3 data with a systematic review and meta-analysis of all studies that assessed the accuracy of HAS using angiography (any modality). RESULTS: IST-3 had 273 patients with baseline CTA or MRA and was the largest study of HAS accuracy. The meta-analysis (n=902+273=1175, including IST-3) found sensitivity and specificity of HAS for arterial obstruction on angiography to be 52% and 95%, respectively. HAS was more commonly identified in proximal than distal arteries (47% versus 37%, p=0.015), and its sensitivity increased with thinner CT slices (r=−0.73, p=0.001). Neither extent of obstruction nor time after stroke influenced HAS accuracy. CONCLUSIONS: When present in acute ischemic stroke, HAS indicates a high likelihood of arterial obstruction, but its absence indicates only a 50/50 chance of normal arterial patency. Thin-slice CT improves sensitivity of HAS detection

    Real-world Independent Testing of e-ASPECTS Software (RITeS): statistical analysis plan

    Get PDF
    Background: Artificial intelligence-based software may automatically detect ischaemic stroke lesions and provide an Alberta Stroke Program Early CT score (ASPECTS) on CT, and identify arterial occlusion and provide a collateral score on CTA. Large-scale independent testing will inform clinical use, but is lacking. We aim to test e-ASPECTS and e-CTA (Brainomix, Oxford UK) using CT scans obtained from a range of clinical studies.Methods: Using prospectively collected baseline CT and CTA scans from 10 national/international clinical stroke trials or registries (total >6600 patients), we will select a large clinically representative sample for testing e-ASPECTS and e-CTA compared to previously acquired independent expert human interpretation (reference standard). Our primary aims are to test agreement between software-derived and masked human expert ASPECTS, and the diagnostic accuracy of e-ASPECTS for identifying all causes of stroke symptoms using follow-up imaging and final clinical opinion as diagnostic ground truth. Our secondary aims are to test when and why e-ASPECTS is more or less accurate, or succeeds/fails to produce results, agreement between e-CTA and human expert CTA interpretation, and repeatability of e-ASPECTS/e-CTA results. All testing will be conducted on an intention-to-analyse basis. We will assess agreement between software and expert-human ratings and test the diagnostic accuracy of software. Conclusions: RITeS will provide comprehensive, robust and representative testing of e-ASPECTS and e-CTA against the current gold-standard, expert-human interpretation

    Arterial Obstruction on Computed Tomographic or Magnetic Resonance Angiography and Response to Intravenous Thrombolytics in Ischemic Stroke

    Get PDF
    BACKGROUND AND PURPOSE: Computed tomographic angiography and magnetic resonance angiography are used increasingly to assess arterial patency in patients with ischemic stroke. We determined which baseline angiography features predict response to intravenous thrombolytics in ischemic stroke using randomized controlled trial data. METHODS: We analyzed angiograms from the IST-3 (Third International Stroke Trial), an international, multicenter, prospective, randomized controlled trial of intravenous alteplase. Readers, masked to clinical, treatment, and outcome data, assessed prerandomization computed tomographic angiography and magnetic resonance angiography for presence, extent, location, and completeness of obstruction and collaterals. We compared angiography findings to 6-month functional outcome (Oxford Handicap Scale) and tested for interactions with alteplase, using ordinal regression in adjusted analyses. We also meta-analyzed all available angiography data from other randomized controlled trials of intravenous thrombolytics. RESULTS: In IST-3, 300 patients had prerandomization angiography (computed tomographic angiography=271 and magnetic resonance angiography=29). On multivariable analysis, more extensive angiographic obstruction and poor collaterals independently predicted poor outcome (P1 indicates benefit) in patients with (odds ratio, 2.07; 95% confidence interval, 1.18-3.64; P=0.011) versus without (odds ratio, 0.88; 95% confidence interval, 0.58-1.35; P=0.566) arterial obstruction (P for interaction 0.017). CONCLUSIONS: Intravenous thrombolytics provide benefit to stroke patients with computed tomographic angiography or magnetic resonance angiography evidence of arterial obstruction, but the sample was underpowered to demonstrate significant treatment benefit or harm among patients with apparently patent arteries. CLINICAL TRIAL REGISTRATION: URL: http://www.isrctn.com. Unique identifier: ISRCTN25765518

    Accuracy of artificial intelligence software for CT angiography in stroke

    Get PDF
    Objective: Software developed using artificial intelligence may automatically identify arterial occlusion and provide collateral vessel scoring on CT angiography (CTA) performed acutely for ischemic stroke. We aimed to assess the diagnostic accuracy of e‐CTA by Brainomixℱ Ltd by large‐scale independent testing using expert reading as the reference standard. Methods: We identified a large clinically representative sample of baseline CTA from 6 studies that recruited patients with acute stroke symptoms involving any arterial territory. We compared e‐CTA results with masked expert interpretation of the same scans for the presence and location of laterality‐matched arterial occlusion and/or abnormal collateral score combined into a single measure of arterial abnormality. We tested the diagnostic accuracy of e‐CTA for identifying any arterial abnormality (and in a sensitivity analysis compliant with the manufacturer's guidance that software only be used to assess the anterior circulation). Results: We include CTA from 668 patients (50% female; median: age 71 years, NIHSS 9, 2.3 h from stroke onset). Experts identified arterial occlusion in 365 patients (55%); most (343, 94%) involved the anterior circulation. Software successfully processed 545/668 (82%) CTAs. The sensitivity, specificity and diagnostic accuracy of e‐CTA for detecting arterial abnormality were each 72% (95% CI = 66–77%). Diagnostic accuracy was non‐significantly improved in a sensitivity analysis excluding occlusions from outside the anterior circulation (76%, 95% CI = 72–80%). Interpretation: Compared to experts, the diagnostic accuracy of e‐CTA for identifying acute arterial abnormality was 72–76%. Users of e‐CTA should be competent in CTA interpretation to ensure all potential thrombectomy candidates are identified
    • 

    corecore