2,169 research outputs found

    Controllable quantum scars in semiconductor quantum dots

    Get PDF
    Quantum scars are enhancements of quantum probability density along classical periodic orbits. We study the recently discovered phenomenon of strong, perturbation-induced quantum scarring in the two-dimensional harmonic oscillator exposed to a homogeneous magnetic field. We demonstrate that both the geometry and the orientation of the scars are fully controllable with a magnetic field and a focused perturbative potential, respectively. These properties may open a path into an experimental scheme to manipulate electric currents in nanostructures fabricated in a two-dimensional electron gas.Comment: 5 pages, 4 figure

    Stability of the shell structure in 2D quantum dots

    Full text link
    We study the effects of external impurities on the shell structure in semiconductor quantum dots by using a fast response-function method for solving the Kohn-Sham equations. We perform statistics of the addition energies up to 20 interacting electrons. The results show that the shell structure is generally preserved even if effects of high disorder are clear. The Coulomb interaction and the variation in ground-state spins have a strong effect on the addition-energy distributions, which in the noninteracting single-electron picture correspond to level statistics showing mixtures of Poisson and Wigner forms.Comment: 7 pages, 8 figures, submitted to Phys. Rev.

    Regulation, regulative legitimacy and legitimation of ride-sourcing platforms in Finland

    Get PDF
    Abstract. Since their inception ride-sourcing companies have disrupted the traditional taxi markets with their digital platforms and match-making algorithms. However in the previous hundred years the incumbent taxi companies had become protected by national legislation which aimed to maintain public order and safety. Despite the well-developed regulation on taxi market the legislation has not been clear whether ride-sourcing is legal or not. This is what the new players such as Uber have been exploiting with their aggressive expansion strategies when trying to win the race on network effects. This thesis studies the regulative landscape of ride-sourcing phenomenon in Finland and the three law making processes in 2015–2020. It summarizes how the regulation changed from the ride-sourcing platform point of view and uncovers the legitimation strategies Uber used when establishing a subsidiary in Finland already before the first reform of the law on transportation in 2018. It matches the strategies to the ones previously identified in the literature and gives insight how disrupting technology company has tried to affect the law makers in order to create a legislation which would ultimately grant ride-sourcing regulative legitimacy. The results of the study tell the story of how the closed taxi market in Finland has opened up to welcome ride-sourcing platforms after a few missteps. Second it demonstrates how the IT legitimacy taxonomy by Kaganer et al. (2010) can be used to understand the legitimation strategies of a private organization during a law making process in the hopes of establishing regulative legitimacy in the future. Finally it reveals that while the regulation has changed to more favourable for ride-sourcing, the battle is far from over and new disputes are looming around the corner

    Scale dependence of cosmological backreaction

    Full text link
    Due to the non-commutation of spatial averaging and temporal evolution, inhomogeneities and anisotropies (cosmic structures) influence the evolution of the averaged Universe via the cosmological backreaction mechanism. We study the backreaction effect as a function of averaging scale in a perturbative approach up to higher orders. We calculate the hierarchy of the critical scales, at which 10% effects show up from averaging at different orders. The dominant contribution comes from the averaged spatial curvature, observable up to scales of 200 Mpc. The cosmic variance of the local Hubble rate is 10% (5%) for spherical regions of radius 40 (60) Mpc. We compare our result to the one from Newtonian cosmology and Hubble Space Telescope Key Project data.Comment: 6 pages, 2 figures; v3: substantial modifications, new figure

    Interaction-Induced Spin Polarization in Quantum Dots

    Get PDF
    The electronic states of lateral many electron quantum dots in high magnetic fields are analyzed in terms of energy and spin. In a regime with two Landau levels in the dot, several Coulomb blockade peaks are measured. A zig-zag pattern is found as it is known from the Fock-Darwin spectrum. However, only data from Landau level 0 show the typical spin-induced bimodality, whereas features from Landau level 1 cannot be explained with the Fock-Darwin picture. Instead, by including the interaction effects within spin-density-functional theory a good agreement between experiment and theory is obtained. The absence of bimodality on Landau level 1 is found to be due to strong spin polarization.Comment: 4 pages, 5 figure

    Optimal Control of Quantum Rings by Terahertz Laser Pulses

    Get PDF
    Complete control of single-electron states in a two-dimensional semiconductor quantum-ring model is established, opening a path into coherent laser-driven single-gate qubits. The control scheme is developed in the framework of optimal control theory for laser pulses of two-component polarization. In terms of pulse lengths and target-state occupations, the scheme is shown to be superior to conventional control methods that exploit Rabi oscillations generated by uniform circularly polarized pulses. Current-carrying states in a quantum ring can be used to manipulate a two-level subsystem at the ring center. Combining our results, we propose a realistic approach to construct a laser-driven single-gate qubit that has switching times in the terahertz regime.Comment: Phys. Rev. Lett. (in print) (2007

    Strictly correlated uniform electron droplets

    Get PDF
    We study the energetic properties of finite but internally homogeneous D-dimensional electron droplets in the strict-correlation limit. The indirect Coulomb interaction is found to increase as a function of the electron number, approaching the tighter forms of the Lieb-Oxford bound recently proposed by Rasanen et al. [Phys. Rev. Lett. 102, 206406 (2009)]. The bound is satisfied in three-, two-, and one-dimensional droplets, and in the latter case it is reached exactly - regardless of the type of interaction considered. Our results provide useful reference data for delocalized strongly correlated systems, and they can be used in the development and testing of exchange-correlation density functionals in the framework of density-functional theory

    Optimal laser-control of double quantum dots

    Get PDF
    Coherent single-electron control in a realistic semiconductor double quantum dot is studied theoretically. Using optimal-control theory we show that the energy spectrum of a two-dimensional double quantum dot has a fully controllable transition line. We find that optimized picosecond laser pulses generate population transfer at significantly higher fidelities (>0.99) than conventional sinusoidal pulses. Finally we design a robust and fast charge switch driven by optimal pulses that are within reach of terahertz laser technology.Comment: 5 pages, 4 figure
    • …
    corecore