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Coherent single-electron control in a realistic semiconductor double quantum dot is studied theoretically.
Using optimal-control theory, we show that the energy spectrum of a two-dimensional double quantum dot has
a fully controllable transition line. We find that optimized picosecond laser pulses generate population transfer
at significantly higher fidelities ��0.99� than conventional sinusoidal pulses. Finally, we design a robust and
fast charge switch driven by optimal pulses that are within reach of terahertz laser technology.
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Double quantum dots �DQDs�, i.e., coupled two-
dimensional �2D� electron traps, have been under recent
and extensive studies both experimentally1–3 and
theoretically.4–8 The main interest in DQDs arises from their
potential for solid-state quantum computation that could be
achieved, in principle, by rapidly switching voltages of elec-
trostatic gates. The gates permit to tune at will the system
geometry and hence the electronic properties of DQDs. Co-
herent manipulation of a single charge2 and coupled spins1

has already been achieved, and recently, a coherence time of
�200 ns was obtained for a well isolated silicon DQD.3 The-
oretical studies on single-electron transport inside the DQD
driven by linear switches and linearly polarized continuous
waves �cw’s� were reported very recently.4 In the latter case,
the transport is rather sensitive to possible anharmonicity of
the potential and limited to uncoupled dots far apart from
each other. Electron control in DQDs has been studied also
using genetic algorithms5 as well as rotating-wave and reso-
nant approximations, leading to a reduction to a three-level
system.6 To the best of our knowledge, however, a general
N-level control scheme by using direct external electric fields
has not been introduced for 2D-DQDs until now.

In this paper, we discuss the controllability criteria for
single-electron states of DQDs by means of external laser
pulses. We show that at certain interdot distances, some of
the single-electron states allow full population transfer from
the ground state to those states. We apply quantum optimal-
control theory �OCT�9 which yields the optimal laser pulses
for predefined transitions. We obtain high occupations
��99% � of the target states in a realistic DQD in a few
picoseconds, which is well in the coherent regime. If the
initial and final states are chosen to have full localization of
the electron in one or the other dot, this scheme enables rapid
and controlled transport which is not sensitive to the interdot
distance or to the inevitable anharmonicities in the confining
potential.

In the static 2D Hamiltonian, Ĥ0=−��x
2+�y

2� /2+Vc�x ,y�,
the external potential describing the DQD is, in its most
common form,8 given by

Vc�x,y� =
�0
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�2

+ y2,�x +
d

2
�2

+ y2� , �1�

where d is the distance between the potential minima and
�0=0.5 is the confinement strength with a typical value for
DQDs. We apply the effective-mass approximation for
electrons moving in GaAs and set the effective mass to m*

=0.067me and the dielectric constant to �=12.7�0. The
energies, lengths, and times are given in effective a.u.:
Ha*= �m* /�2�Ha�11.30 meV, a0

*= �m* /��a0�10.03 nm,
and ut

*=� /Ha*�58.23 fs, respectively.
In Fig. 1, we show the lowest energy levels as a function

of d �left panel� as well as densities of six lowest eigenstates
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FIG. 1. �Color online� Left panel: lowest eigenenergies of a
double quantum dot with �0=0.5 as a function of the interdot dis-
tance. Black, red �thick�, and blue �thin� curves mark the ground
state, controllable states, and uncontrollable states, respectively.
Right panel: densities of six lowest eigenstates at d=5. The dashed
lines mark the nodes of the wave functions.
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at d=5 �right panel�. The d=0 limit corresponds to the well-
known shell structure of a single 2D harmonic oscillator
�HO�, where the energy levels are n-fold degenerate at ener-
gies n�0 �n=1,2 , . . . �. Increasing d leads to lifting of the
degeneracies and generates crossings and avoided crossings
between the energy levels. In the weak-coupling limit
d→�, the bundling of the levels at n�0 is restored. In this
limit, the energies are 2n-fold degenerate corresponding to
two �uncoupled� HOs. We label the states in the DQD as
		ij
= 	ij
, where i=0,1 , . . . denotes the �i+1�th bundle of
states at d=0, and j=0,1 , . . . denotes the �j+1�th state in
each bundle. As visualized in the right panel of Fig. 1, index
i also corresponds to the number of nodes in the wave func-
tion. We show below that our labeling yields simple rules for
controllable and uncontrollable states as a function of d.

It is a well-known fact in control theory that an infinite-
level single HO is not controllable in the dipole
approximation.10 This is in contrast with the truncated HO
which �in most cases� satisfies the controllability criteria.11 In
qualitative arguments, the uncontrollability of a single HO
�d=0� in the dipole approximation stems from the equidis-
tant single-electron level spacings. Using the above labeling
of the states, the nonvanishing dipole-matrix elements
�ij	
̂	kl
 between the HO states �d=0� are

	�i, j	
̂	i + 1, j + 1
	 = �2�j + 1� , �2�

	�i, j	
̂	i + 1, j
	 = �2�i − j + 1� , �3�

where 
̂=−er is the dipole operator. Equation �2� holds for
all values of d, and the corresponding energy-level spacings
remain constant. Hence, transitions ij→ �i�1��j�1� remain
uncontrollable. On the other hand, the elements given in the
left-hand side �LHS� of Eq. �3� change as a function of d, as
well as the level spacings. The behavior already suggests that
transitions ij→ �i�1�j become controllable when d is in-
creased from zero. Our calculations below confirm this pre-
diction. Starting with the ground state 	00
, the controllable
transition line is then 	00
→ 	10
→ 	20
. . . �see the red curves
in Fig. 1�. In the weak-coupling limit �d→��, however, the
LHS of Eq. �3� becomes

lim
d→�

	�i, j	
̂	i + 1, j
	 = � if i − j is even

�2�i − j� if i − j is odd,
� �4�

so that only the trivial transitions between the degenerate
gerade and ungerade states are possible. In the large-d re-
gime, however, breaking the interdot symmetry leads to the
possibility of charge transport between the dots �see below�.

Next, we apply OCT in order to find optimal laser pulses
for transitions from the initial state 	�I
= 	�t=0�
 to the
target state 	�F
= 	�t=T�
 in a fixed time interval T. In the
OCT formalism, we maximize the overlap 	��T� 	�F
	2

while minimizing the fluence of the laser pulse. The control
equations are12

i�t�t� = Ĥ�t�, �0� = �I , �5�

i�t��t� = Ĥ��t�, ��T� = �F��F	�T�
 , �6�

��t� = −
A�t�

�
Im���t�	
̂	�t�
 , �7�

where Eq. �5� is the time-dependent Schrödinger equation

with Ĥ= Ĥ0− 
̂��t� and ��t� is the Lagrange multiplier. The
optimal laser pulse ��t� is provided at the end of the iterative
procedure.13 We point out that the initial pulse �zeroth itera-
tion� is sinusoidal and has both x and y components, whereas
the converged optimal pulse is always found to be polarized
in the x direction, i.e., ��t�=��t�x̂. In Eq. �7�, we choose a
sinusoidal pulse envelope A�t�=sin2��t /T� and restrict the
pulse intensity by a penalty factor �. Unless stated otherwise,
we have fixed �=0.5 leading to pulse intensities
103 , . . . ,104 W /cm2. We apply a rapidly converging numeri-
cal scheme13,14 that has been implemented in the OCTOPUS

code.15

We consider excitations only from the ground state and
set 	�I
= 	00
. Figure 2 shows the maximum overlaps
	��T� 	�F
	2, i.e., maximum occupations of the target states
	10
 and 	20
 as a function of the interdot distance �note the
logarithmic scale�. The pulse lengths are fixed to T=50 and
T=100, respectively. When d is increased, the target-state
occupations increase from the HO value of �0.6 �see Ref.
10� exponentially to close to one. As expected, at large in-
terdot distances �d�8�, corresponding to the uncoupling of
the DQD, the occupations for 	00
→ 	20
 decrease back to
the HO value marked by a dashed line. On the other hand,
the occupation for 	00
→ 	10
 increases even further in this
limit due to the asymptotic degeneracy of the states �see
above�. Generally, for this transition, a pulse length of
T=50 a.u.�3 ps is sufficient to achieve high occupations. In
the transition 	00
→ 	20
 instead, T=100 a.u.�6 ps is
needed for the same accuracy.

As seen in Fig. 2, the target-state occupations above 90%
are generally obtained at distances 2�d�8, i.e., at
d�20, . . . ,80 nm. This length scale is well realizable in
experiments.1–3 We point out that the most distinctive devia-
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FIG. 2. �Color online� Maximum occupation �logarithmic scale�
of the target state as a function of the interdot distance d in transi-
tions 	00
→ 	10
 with pulse length T=50 �circles� and 	00
→ 	20

with T=100 �squares�. The lines are guides for the eyes. The dashed
line denotes the maximum target-state occupation of 0.6 for a single
harmonic oscillator. The jump marked by an arrow is due to a
resonance effect �see text�.
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tions in the occupations in this regime arise from resonance
effects. For example, the jump in the 	00
→ 	10
 transition at
d=3.6, . . . ,3.7 �see the arrow in Fig. 2�, where the occupa-
tion decreases from 0.9997 to 0.9591, is due to the degen-
eracy of �00

10 and �10
20−�20

30. The degeneracy disturbs the op-
timal transition path leading to reduced maximum
occupation.

In Fig. 3, we give two examples of optimized pulses and
the occupations of states during transitions: ��a� and �c��
	00
→ 	10
 when d=3 and ��b� and �d�� 	00
→ 	20
 when
d=5. The pulse for 	00
→ 	10
 has the resonant frequency
�00

10 as the major component, but as seen in the occupations,
state 	20
 is also populated during the transition. For com-
parison, we exposed the system also to a cw having the reso-
nant �Rabi� frequency �R=�00

10 and the same fixed length
�T=50� as the optimized pulse. We set the pulse amplitude to
�R /
00

10=� / �
00
10T� to satisfy the �-pulse condition. This

leads to occupation of 0.93 of state 	10
. In view of the 0.999
occupation achieved by the optimal pulse, OCT is superior to
the cw approach. A comprehensive comparison of occupa-
tions achieved with different pulse lengths applying OCT
and cw’s for a quantum-ring system is given in Ref. 12.

As shown in Fig. 3�d�, the 	00
→ 	20
 transition must be
mediated by the 	10
 state, since a direct transition is forbid-
den by the dipole selection rules. However, the intermediate
state 	10
 does not need to get fully populated during the
optimized transition process. The higher states are also in-
volved in the process, and in this example, the state 	30

receives considerable occupation with a maximum of �20%
at t�90. The final target-state occupation is 0.998, whereas
using two resonant cw’s one after the other, we could not
exceed 0.9 �pulse length fixed to T=100�. Generally, in mul-
tilevel transitions of this type, the efficiency of OCT is pro-
nounced with respect to cw’s due to the multiplication of
errors in the latter approach when full population of interme-
diate states is required before changing the resonant fre-
quency.

The control of electron transport in the DQD requires ini-
tialization of the state by localizing the electron in the one of
the dots. Namely, the single-electron ground state of the
DQD is a gerade state with half of the electron in one well
and half in the other �see the lowermost figure in the right
panel of Fig. 1�. Only in the limit d→�, the localized states
become degenerate eigenstates. However, the initial state can
be fixed with certainty by applying a constant external field
or by adjusting the gates in the DQD device in order to create
a potential shift between the two dots. After the initial local-
ization, electron transport into another well can be driven
using a linear switch or a cw with the resonant confinement
frequency �0. These types of transport on time scales of
10−10 s, close to the required times for SWAP operations in
experiments,1 were reported very recently by Førre et al.4

Now, we show that OCT provides a very fast �switching
times of a few picoseconds� and stable alternative to control
the electron transport in a DQD. First, we break the degen-
eracy of the ground state by setting the external potential in
the �lower� left dot Vc

left→Vc
left−0.2. Then, the ground state

	00L
= 	L
 and the first excited state 	00R
= 	R
 correspond to
electron localization in the �lower� left and �upper� right
dots, respectively, provided that d is sufficiently large. The
result of the OCT calculation for transition 	L
→ 	R
 is
shown in Fig. 4. The pulse length is fixed to T=100
��6 ps�, and the interdot distance d=6 corresponding to
relatively large coupling between the dots. The spectrum of
the optimized pulse �a� has a large peak at the resonant fre-
quency �=�0=0.5 a.u.�9 THz and a few smaller peaks at
��0.2, . . . ,0.3 and ��1. The small peaks correspond to
transitions in the higher states which get significantly popu-
lated in the transitions. This is visualized in Fig. 4�b� show-
ing the occupations of 	L
 and 	R
 �solid lines� that sum up
only to about 50% in the middle of the transition at T�50.
We also plot the integrated electron densities �R and �L
�dashed lines� in the �lower� left and �upper� right parts of
the DQD, respectively. The quasiperiodic oscillations in the
densities indicate that the electron charge transfers in blobs
as visualized in the snapshots in Figs. 4�c�–4�h�. In this ex-
ample, we find the final occupation 	��T� 	R
	2=0.985. It is
worth noting that the final occupations are closer to one at
larger interdot distances so that the coupling between the
dots is weaker. In this regime, the optimized pulses may
attain a linear slope. This immediately suggests that a com-
bination of a linear field and OCT could be ideal in control-
ling transport in the uncoupled regime. In this work, how-
ever, we focus on coupled DQDs which we, in fact, find the
most challenging in terms of electron control in nanoscale
applications.

There are three significant advantages in OCT with re-
spect to a linear switch or a resonant cw when generating
electron transport in DQDs. First, the optimization procedure
is insensitive to the interdot coupling. The cw approach, in
principle, requires an uncoupled system for electron trans-
port with unit probability.4 We tested a cw with the resonant
frequency �0 for the above example with various amplitudes
and could not exceed occupation of 0.4 of the target state 	R
.
Second, the optimized pulses can be very short in order to
achieve sufficient occupation, since the higher-lying states
are incorporated in the control problem. In the above ex-
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FIG. 3. �Color online� Upper panel: optimized pulses �x compo-
nents� for transitions �a� 	00
→ 	10
 and �b� 	00
→ 	20
. The inter-
dot distances are fixed to d=3 and 5 and the pulse lengths to T
=50 and 100, respectively. Lower panel: occupations of states in-
volved in the transitions.

OPTIMAL LASER CONTROL OF DOUBLE QUANTUM DOTS PHYSICAL REVIEW B 77, 085324 �2008�

085324-3



ample the pulse length of �6 ps is more than by a factor of
10 smaller than in linear and cw switches and well below the
recently measured coherence times of hundreds of nanosec-
onds in DQDs.3 Third, and probably most important, the
OCT approach is insensitive to deviations in the external

potential, since the specific shape of the DQD is taken into
account explicitly through the external potential in the
Hamiltonian. We tested this by adding a fourth-order anhar-
monic term in the external potential �Eq. �1��. This results in
a change in the optimal pulse shape and in an increase in the
required pulse length �in the case of a positive anharmonic-
ity�. However, we found no decrease in the obtained target-
state occupation when using anharmonicities that lead to dra-
matic loss of accuracy in the cw approach.4 In practical
applications, the exact shape of the external potential could
be obtained by measuring the differential conductance in a
single-electron transport experiment and thereafter numeri-
cally solving the �inverse� Schrödinger equation. This ap-
proach has been applied to modeling external impurities in-
side single quantum dots.16

We expect that the experimental creation of optimal laser
pulses, such as presented in this work, will be soon with-
in reach of laser technologies. The intensities of
103–104 W /cm2 required for DQD excitations can be al-
ready obtained in the terahertz regime by high-power free-
electron lasers.17 On the other hand, shaping of picosecond
terahertz pulses has been recently made possible by employ-
ing transient polarization grating.18 Quantum cascade lasers19

may also provide an applicable route for precise pulse shap-
ing in the terahertz regime. The rapid developments in the
terahertz laser technology20 will eventually lead to the com-
bination of sufficient pulse power and accurate manipulation
of the pulse shape.

Finally, we point out that in our future work, we aim at
combining our approach with magnetic-field optimization
which could allow us to coherently control the spin state
simultaneously with the electron localization.
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