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We study the energetic properties of finite but internally homogeneous D-dimensional electron droplets in
the strict-correlation limit. The indirect Coulomb interaction is found to increase as a function of the electron
number, approaching the tighter forms of the Lieb-Oxford bound recently proposed by Räsänen et al. [Phys.
Rev. Lett. 102, 206406 (2009)]. The bound is satisfied in three-, two-, and one-dimensional droplets, and in
the latter case it is reached exactly—regardless of the type of interaction considered. Our results provide useful
reference data for delocalized strongly correlated systems, and they can be used in the development and testing
of exchange-correlation density functionals in the framework of density-functional theory.
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I. INTRODUCTION

Strongly correlated materials have attracted tremendous
interest across different fields of physics.1 Famous examples
of strongly correlated systems are high-temperature super-
conductors, organic conductors, ultracold atoms, and semi-
conductor quantum dots. These systems provide a particular
challenge to theorists—simply because their properties cannot
be predicted from the behavior of individual particles.

A physically important quantity in a quantum system is
the magnitude of the indirect particle-particle interaction. This
corresponds to the energy difference between the expectation
value of the quantum mechanical interaction operator and
the classical interaction energy of charged particles [see Eq.
(2) below]. Lieb2 showed that this quantity has a rigorous
lower bound for Coulomb-interacting three-dimensional (3D)
systems. Later on, the bound was tightened3,4 and extended to
two-dimensional5 (2D) systems. In density-functional theory
(DFT), this bound has been extensively used for building and
testing approximations for the exchange-correlation energy
functional (see, e.g., Refs. 6–8 and references therein).

More recently, using physical rather than formal arguments,
an even tighter bound for 3D and 2D systems has been
proposed together with an extension to one-dimensional (1D)
systems.9 The basic idea of Ref. 9 is that the tightest form of
the lower bound on the indirect interaction in D dimensions
should correspond to the amount of correlation in the infinite
D-dimensional homogeneous electron gas (HEG) in the low-
density limit.8,9 This physically appealing idea provides an
improved bound for 3D systems, the introduction of a relatively
tighter bound in 2D, and a proposal for the bound in 1D.

Odashima and Capelle10 have shown through extensive
numerical studies that finite electronic systems are energet-
ically far above the lower bound, even when considering
the tighter form of Ref. 9. This has triggered our interest
to construct a finite yet physically simple system that is as
close as possible to the bound of Ref. 9, or, if possible,
even below (which would imply violation of the proposed
lower bound). To challenge the bound maximally for a given
density, the strict-interaction limit of DFT provides a suitable
methodology. The mathematical structure of this approach—

corresponding to a system with a given density and maximum
spatial correlation between the electrons—has been uncovered
in the past three years.11–13 Consequently, explicit solutions, at
least for centrally symmetric densities, have started to become
available.14,15

In this paper we use the strong-interaction limit of DFT
to investigate the Lieb-Oxford bound in 3D, 2D, and 1D.
We take the simplest imaginable test system, i.e., a finite
D-dimensional electron droplet of a uniform density (up to a
certain radius above which the density is rigorously zero) and
examine its properties as the number of particles changes. Our
analytic and numerical results show no evidence of violation
of the lower bounds proposed in Ref. 9, but in all dimensions
the low-density result of the HEG is approached as a function
of the electron number N . In 1D, our large-N limit exactly
corresponds to the proposed lower bound—regardless of the
type of electron-electron interaction examined (contact, soft
Coulomb, and regularized). In 2D and 3D, on the other hand,
the large-N result is ∼2% off the bound, although this small
difference is within the errors associated with our numerical
procedure.

II. THEORY

A. Lower bound on the indirect interaction

We consider a system of interacting electrons described by
the Hamiltonian

Ĥ = T̂ + V̂ee + V̂ext, (1)

where T̂ is the kinetic-energy operator, V̂ee is the electron-
electron (e-e) interaction, and V̂ext accounts for an external
local one-body potential. We can define the indirect (quantum
mechanical) part of the e-e interaction as

W̃ [�] ≡ 〈�|V̂ee|�〉 − U [n�], (2)

where

U [n] = 1

2

∫
dr′

∫
dr n(r)n(r′)Vee(|r − r′|) (3)

is the classical (Hartree) interaction calculated from the
(charge) density n(r). In Eq. (2), � = �(r1σ1, . . . ,rNσN ) is
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an arbitrary N -electron wave function (where σi denote spin
variables) and n�(r) is the density associated with it. The
indirect e-e interaction has an important lower bound which
can be expressed as

W̃ [�] � − CD

∫
dDr n

1/D+1
� (r), (4)

where D = 3,2,1 is the dimension. In 3D, the bound originally
found by Lieb2 is best known as the Lieb-Oxford (LO) bound,3

having a prefactor CLO
3 = 1.68. The bound has been tightened

by physical yet nonrigorous arguments to C3 = 1.44.9 In 2D
the existence of the bound was proven by Lieb, Solovej, and
Yngvason5 (LSY) with CLSY

2 = 192
√

2π ≈ 481.28. In Ref. 9,
a tighter bound of C2 = 1.96 was proposed.

The bound in Eq. (4) was originally constructed for
Coulomb-interacting systems, where V̂ee = ∑

i<j |ri − rj |−1.
In 1D, however, this type of interaction is ill defined due to
the divergence at |xi − xj | = 0. In Ref. 9 it was shown that a
1D bound can be constructed by applying a contact interaction
or a soft-Coulomb interaction. In Sec. III C, the 1D case is
studied in detail considering three types of the e-e interaction.

The bound of Eq. (4) can be equivalently expressed
as6,8,10,16

λD[�] ≡ W̃ [�]

ELDA
x [n�]

� CD

AD

≡ λ̄D. (5)

where

ELDA
x [n] = −AD

∫
dDr n1/D+1(r) (6)

is the local density approximation (LDA) for the electronic ex-
change energy, corresponding to the exact exchange energy for
the HEG. Here the prefactors are given by A3 = 34/3π−1/3/4
and A2 = 25/2π−1/2/3 (for the 1D case see Sec. III C). In the
right-hand side of Eq. (5), the values obtained for λ̄D in 3D,
2D, and 1D are

λ̄3 = 1.96, λ̄2 = 1.84, λ̄1 = 2. (7)

They have been proposed as the tightest bounds with the pref-
actors CD given above—hence the bar symbol to differentiate
from the functional λD[�]. The upper bounds λ̄D correspond
to the low-density limit of the D-dimensional HEG. The
physical argumentation9 behind the HEG result was motivated
by the finding of Lieb and Oxford, who showed that there is a
function λ̃3(N ) which provides an upper bound for all systems
with a particle number equal to N .3,17 The function λ̃3(N ) is
monotonic, with λ̃3(N + 1) � λ̃3(N ), so that the most general
bound of Eq. (5) is obtained by considering N → ∞.

In this paper we focus on the question how the LO bound
can be challenged. In other words, how must the wave function
� in Eq. (5) be chosen such that λD[�] becomes as large as
possible? For any class of wave functions with a given fixed
density n(r),18 the answer to this question is

max
�→n

λD[�] ≡ �D[n] ≡ W∞[n]

ELDA
x [n]

, (8)

where

W∞[n] ≡ min
�→n

W̃ [�] = min
�→n

〈�|V̂ee|�〉 − U [n] (9)

is the indirect Coulomb energy in the strong-interaction limit
of DFT, which can be now calculated (at least for centrally
symmetric densities) with the theory of strictly correlated
electrons.11 This quantity was also considered in the original
proof of the bound.2,3,6,8 In the following section we briefly
review how the functional W∞[n] of Eq. (9) can be constructed
for a given density n(r).

B. Strong-interaction limit

We may define �α[n] as the wave function that minimizes
〈�α|T̂ + αV̂ee|�α〉—corresponding to a system where the
interaction is scaled—with the constraint of reproducing
the given density n(r). The scaled indirect Coulomb inter-
action Wα[n] = 〈�α[n]|V̂ee|�α[n]〉 − U [n] ≡ 〈V α

ee〉 − U [n]
satisfies a set of useful exact relations within DFT.19

Here we consider the strong-interaction limit α → ∞,
where it is sufficient to minimize the interaction term alone,
since 〈αV̂ee〉 grows faster than 〈T̂ 〉 ∝ α1/2.12,20 As anticipated
in Eq. (9), we thus compute explicitly, for a given density n(r),
the functional

〈V̂ ∞
ee 〉 ≡ min

�→n
〈�|V̂ee|�〉. (10)

In the strong-interaction limit of DFT the electrons minimize
their interaction energy while reproducing the given smooth
density n(r). This α → ∞ limit is thus different from the
more commonly considered Wigner crystal,21 as here the
one-electron density is fixed a priori (and can be very different
from the one of a Wigner-like structure, e.g., it can be the
density of a weakly correlated system like a neutral atom11).
As discussed in detail in Refs. 11, 12, and 14, in the α → ∞
limit the relative positions of the electrons become strictly
correlated: The position r1 = r of the first electron determines
the positions ri of all the other electrons via N − 1 co-motion
functions fi(r), ri = fi(r). Thus, the probability of finding the
first electron in the volume element dr around the position
r is the same as finding the ith electron in the volume
element dfi(r) around fi(r), so that the co-motion functions
are linked to the density through the differential equation
n(r)dr = n[fi(r)]dfi(r), which has to be solved with the
boundary condition that the corresponding expectation value
of the interaction operator,11

〈V̂ ∞
ee 〉 = W∞[n] + U [n] =

N−1∑
i=1

N∑
j=i+1

∫
dr

n(r)/N

|fi(r) − fj (r)| ,

(11)

is minimum.
Following Refs. 11 and 14, we consider here a spherical

(circular) density in 3D and 2D, for which the fi(r) can be
constructed as follows. Given the expected number of electrons
between 0 and r ,

Ne(r) =
∫ r

0
dr ′ S(r ′) n(r ′), (12)

where S(r) = 4πr2 and 2πr in 3D and 2D, respectively,
the general solution for the radial co-motion functions in a
centrally symmetric N -electron system can be written as11

f2k(r) =
{

N−1
e [2k − Ne(r)], r � a2k,

N−1
e [Ne(r) − 2k], r > a2k,

(13)
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FIG. 1. Example of a section of the vectorial co-motion functions
fi(r) for a uniform droplet in two dimensions with N = 4 electrons.
As the position of the first electron changes on the x axis from x = 0 to
x = a1 = N−1

e (1), the position of the second electron changes along
the boldface curve from r = a2 = N−1

e (2) to r = a1, the position
of the third electron from r = a2 to r = a3 = N−1

e (3), and the one of
the fourth electron from r = a4 = N−1

e (4) to r = a3.

f2k+1(r) =
{

N−1
e [Ne(r) + 2k], r � aN−2k,

N−1
e [2N − Ne(r) − 2k], r > aN−2k,

(14)

where ai = N−1
e (i) and the integer k runs for odd N from 1 to

(N − 1)/2, and for even N from 1 to (N − 2)/2. For even N ,
we need an additional function

fN (r) = N−1
e [N − Ne(r)]. (15)

Equations (13)–(15) determine the distances fi(r) from the
center of the remaining N − 1 electrons when, say, electron 1
is at a distance r from the center. The relative angles between
the electrons, leading to the vectorial co-motion functions fi (r),
are determined by numerical minimization of Eq. (11) for
each r . An example of such calculation for a 2D electron
droplet of a uniform density with N = 4 electrons (see
Sec. III B for more details) is shown in Fig. 1: As the position
of the first electron changes on the x axis from x = 0 to
x = a1 = N−1

e (1), the position of the second electron changes
along the boldface curve from r = a2 to r = a1, the one of
the third electron from r = a2 to r = a3, and the one of
the fourth electron from r = a4 to r = a3. The co-motion
functions satisfy group properties such that the resulting e-e
repulsion energy is invariant under exchange of two or more
electrons, ensuring the indistinguishability of particles.11,14

III. UNIFORM ELECTRON DROPLETS

A. Three dimensions

We consider a homogeneous N -electron droplet with a
constant density n and a radius R. The density can then be
expressed simply as

n(r) =
{

3N
4πR3 , r � R,

0, r > R.
(16)

In a physical sense, this density and the corresponding wave
function must be considered as limit cases (see the end of this
section). The expected number of electrons between 0 and r is

Ne(r) = N
( r

R

)3
θ (R − r) + Nθ (r − R), (17)

where θ is the Heaviside step function. The Hartree energy
becomes

U [n] = 1

2

∫
dr′

∫
dr

n(r)n(r′)
|r − r′| = 3N2

5R
, (18)

and the LDA exchange energy [Eq. (6)] is

ELDA
x = − 35/3N4/3

28/3π2/3R
. (19)

For N = 2, we can readily test the accuracy of the LDA
with respect to the exact exchange energy, Eexact

x (N = 2) =
−U (N = 2)/2. We find ELDA

x /Eexact
x ≈ 0.9621. This ratio is

expected to approach unity as N → ∞.
The co-motion functions [Eqs. (13)–(15)] become

f2k(r) =
∣∣∣∣2k

N
R3 − r3

∣∣∣∣1/3

, (20)

f2k+1(r) =
⎧⎨⎩
(

2k
N

R3 + r3
)1/3

, r � R(1 − 2k/N)1/3,[(
2 − 2k

N

)
R3 − r3

]1/3
, r > R(1 − 2k/N)1/3,

(21)

and for even N we have to add the last function fN (r) =
|R3 − r3|1/3. These co-motion functions keep the electrons
in different spherical shells (each one containing, in the
quantum mechanical problem, on average one electron—see
the example of Fig. 1), while keeping the first derivative of
the external potential continuous.11 The expectation value
of the e-e interaction in the strong-interaction limit can now
be calculated from

〈V̂ ∞
ee (R)〉 = 4π

∫ a1

0
dr r2n(r)Vee[r,f2(r), . . . fN (r),	(r); R]

= 3N

R3

∫ RN−1/3

0
dr r2Vee[r,f2(r), . . . fN (r),	(r); R],

where we have used the fact that integrating between 0 and
R is equivalent11 to integrating N times between 0 and a1,
where a1 = N−1

e (1) = RN−1/3. The function 	(r) denotes all
the relative angles between the electrons as a function of r

and is calculated numerically.11 Changing variables x = r/R

leads to

〈V̂ ∞
ee (R)〉 = 3N

∫ N−1/3

0
dx x2Vee[x,f2(x), . . . fN (x),	(x); R].

(22)

Upon coordinate scaling it is easy to see that

Vee[x,f2(x), . . . fN (x),	(x); R]

= 1

R
Vee[x,f2(x), . . . fN (x),	(x); R = 1]. (23)
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TABLE I. Calculated values for �3 and �2 as a function of the
number of electrons N in uniform strictly correlated electron droplets
in 3D and 2D, respectively.

N �3 �2

1 1.310 1.414
2 1.498 1.556
3 1.550 1.607
4 1.603 1.644
5 1.627 1.666
6 1.657 1.679
7 1.672 1.692

10 1.708 1.719
14 1.733 1.736
20 1.761 1.743
30 1.784 1.758

Finally, we can write Eq. (8) as a function of N ,

�3(N ) = 〈V̂ ∞
ee (R = 1)〉 − 3N2/5

−35/3π−2/3(N/4)4/3
, (24)

where, as said, 〈V̂ee(R = 1)〉 is calculated numerically. Special
cases are N = 1 and N = 2, yielding analytic expressions.
For a single electron 〈V̂ee〉 is trivially zero and we find
�3(N = 1) = 4(2π/3)2/3/5 ≈ 1.310. For N = 2 we get
〈V̂ee(R = 1)〉 = 3(8 − 21/3
(1/6)
(4/3)/

√
π )/20, leading to

�3(N = 2) ≈ 1.498. Both values are lower than those given
for λ̃3(N = 1) and λ̃3(N = 2) in Ref. 17.

Our numerical results for larger N are summarized in
Table I. The results are also plotted (as circles) in Fig. 2. The
curve intersecting the tabulated values has been obtained by

5 10 15 20 25 30
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

N

Λ lim Λ3N→∞
lim Λ2N→∞

3D bound

2D bound

3D

2D

FIG. 2. (Color online) Values obtained for �3 (circles) and �2

(squares) as a function of the electron number N . The dotted lines
show the estimated limit values for uniform electron droplets when
N goes to infinity. The dashed lines show the bounds λ̄3 and λ̄2 for
3D and 2D systems, respectively, corresponding to the low-density
limit of the homogeneous electron gas (Ref. 9).

numerical fitting of 〈V̂ ∞
ee (R = 1)〉 using a liquid-drop model

expansion, which leads for �3(N ) to the formula

�fit
3 (N ) = −4

3

(
2π

3

)2/3 (
a1 + a2 N−1/3 + a3 N−2/3

)
, (25)

where a1 = −0.879 717, a2 = 0.153 634, and a3 = 0.123 195.
When N goes to infinity, the fit yields a value �3(N → ∞) ≈
1.92 plotted as a dotted line in Fig. 2. This value is lower than
the bound proposed in Ref. 9 for 3D systems corresponding to
λ̄3 = 1.9555 (dashed line). However, the difference is rather
small (∼2%) and it is actually within the error associated to
the fitting procedure. Our values for �3(N ) as well as our
fitting curve are always below the model for λ̃3(N ) proposed
by Odashima et al.17

It should be noted that, per se, the density given in Eq. (16)
corresponds to a nondifferentiable wave function due to the
sharp edge at r = R. Therefore, it is important to examine
whether the results above are valid when considering the
density as a limit case of a physical density. A simple choice
would be a density profile of the form of a Fermi function, i.e.,

ñ(r) = const

eα(r−R) + 1
, (26)

where the numerator is the normalization constant and the
value for α determines the sharpness of the edge. The limit
α → ∞ corresponds to the density of the form of Eq. (16).
Figure 3 shows the values obtained numerically for �3 with
N = 1 (bottom) and N = 2 (up) as a function of α. From the
figure it is clear that the (analytic) values corresponding to
the original (sharp) density are approached as α → ∞; this is
particularly convincing with N = 1, where we can numerically

10
1

10
2

10
3

10
4

1.3

1.35

1.4

1.45

1.5

1.55

1.6

α

Λ

α→∞

α→∞

0 1 2
r (a.u.)

n
 (

r)

N = 1

N = 2

α (r−1)
e       + 1

const

3

FIG. 3. (Color online) Values obtained for �3 with N = 1
(bottom) and N = 2 (up) when a soft tail of the density (solid line
in the inset) is applied. In the limit of a sharp edge (dashed line
in the inset), corresponding to α → ∞, the results for the proposed
homogeneous density droplet in Eq. (16) are reproduced (dashed
lines).
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study very large values for α (even several orders of magnitude
larger than those shown in the figure). Thus, applying densities
of the form of Eq. (16) can be seen as a limiting case for a
quantum system.

B. Two dimensions

In 2D a homogeneous N -electron droplet with a radius R

is defined by the density

n(r) =
{

N
πR2 , r � R,

0, r > R,
(27)

and the expected number of electrons between 0 and r is

Ne(r) = N
( r

R

)2
θ (R − r) + Nθ (r − R). (28)

The Hartree energy is more tricky to calculate than in 3D, since
using Eq. (18) directly leads to an elliptic integral. However,
we can use the fact that for a 2D disk with a radius r and a
constant density n, the Hartree potential at the rim of the disk
is VH = 4 n r (Ref. 22). The Hartree energy is now equal to
the work required to charge the disk from the center (r = 0)
to the rim (r = R),

U [n] = N

πR2
2π

∫ R

0
dr rVH (r) = 8N2

3πR
. (29)

The LDA exchange energy is

ELDA
x = −25/2N3/2

3πR
. (30)

Again, for the special case of N = 2 we can compare
ELDA

x with the exact exchange energy, Eexact
x = −U/2. We

find ELDA
x /Eexact

x = 1, i.e., the LDA exchange energy is, by
coincidence, exact for N = 2.

In 2D the co-motion functions have the same form as in
3D [Eqs. (20) and (21)] apart from the change in exponents
as 3 → 2 and 1/3 → 1/2. The expectation value of the e-e
interaction operator in the strong-interaction limit becomes

〈V̂ ∞
ee (R)〉 = 2N

∫ N−1/2

0
dx x Vee[x,f2(x), . . . fN (x),	(x); R],

(31)

and after scaling of the distances we find

�2(N ) = 〈V̂ ∞
ee (R = 1)〉 − 8N2/(3π )

−25/2N3/2/(3π )
. (32)

For N = 1 we get now simply �2(N = 1) = √
2, and the two-

electron case yields �2(N = 2) = 2 − 3π{8 + √
2[ln 2 +

ln(2 − √
2) − 3 ln(2 + √

2)]} ≈ 1.556. Results for larger N

are given in Table I and Fig. 2. Interestingly, the 2D values
are higher than the 3D ones at small N , but at N ∼ 15 they
go below the 3D curve. Again, we use a liquid-drop-model
expansion to fit our data, leading to

�fit
2 (N ) = − 3π

4
√

2
(b1 + b2 N−1/2 + b3 N−1), (33)

with b1 = −1.0814, b2 = 0.121 609, and b3 = 0.129 014. The
large-N limit yields �2(N → ∞) = 1.80, which is, also in this
case, ∼2% lower than the 2D bound λ̄2 = 1.84 in Ref. 9.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

r (a.u.)

V
ee 1

D
  (

a.
u

)

contact 

soft−Coulomb (μ=1)

regularized ( β=1)

FIG. 4. (Color online) Different e-e interaction potentials consid-
ered for 1D systems.

C. One dimension

As mentioned in Sec. II A, the Coulomb interaction is ill
defined in 1D. Various forms for physically reasonable 1D
e-e interaction operators have been suggested, and below
we focus on three of them: the contact, soft-Coulomb, and
regularized interaction. The shapes of the interaction potentials
are visualized in Fig. 4.

Regardless of the type of e-e interaction, the 1D homoge-
neous electron droplet has a density

n(x) =
{

N
2R

, |x| � R,

0, |x| > R,
(34)

and the expected number of electrons between −∞ and x (here
corresponding to the cumulative distribution function) is

Ne(x) =
∫ x

−∞
dx ′ n(x ′) =

⎧⎪⎨⎪⎩
0, x < −R,

N
2R

x + N
2 , |x| � R,

N, x > R,

(35)

The co-motion functions fi(x) can be found in a straightfor-
ward fashion. When the first electron (i = 1) is set at −R, the
electron i is located at ai−1 = 2(i − 1)R/N − R. This leads
to

fi(x) =
{

N−1
e [Ne(x) + i − 1], x � N−1

e (N + 1 − i),

N−1
e [Ne(x) − (N + 1 − i)], x > N−1

e (N + 1 − i),

(36)

and after substituting N−1
e we get

fi(x) =
{

x + 2 R
N

(i − 1), x � 2 R
N

(1 − i) + R,

x + 2 R
N

(i − 1) − 2R, x � 2 R
N

(1 − i) + R.
(37)
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The expectation value of the e-e interaction in the strong-
interaction limit can be written as

〈V̂ ∞
ee (R)〉 =

∫ ∞

−∞
dx

n(x)

N

∑
i>j

Vee(|fi(x) − fj (x)|)

=
∑
i>j

Vee

(∣∣∣∣2 R

N
(i − j )

∣∣∣∣) , (38)

where we have replaced the full integral by N integrals
between −R and a1 = −R + 2R/N , so that the difference
between two co-motion functions is always fi(x) − fj (x) =
2(i − j )R/N . Thus, we notice that the strong-interaction limit
in 1D, in the case of a uniform density, corresponds to the
Wigner-crystal solution due to the translational invariance. In
3D and 2D instead, the distances between fi(r) always depend
on r .

Next, let us write the Hartree energy and the LDA exchange
energy in a general form,

U [n] = N2

8R2

∫ R

−R

∫ R

−R

dx dx ′ Vee(|x − x ′|), (39)

ELDA
x =

∫ ∞

−∞
dx n(x)εx(n), (40)

where the exchange energy per electron in a 1D HEG is21

εx(n) = − 1

2π

∫ 2kF

0
dq Ṽee(q)

(
1 − q

2kF

)
. (41)

Here Ṽee is the Fourier transform of the e-e interaction and
kF = πn/2 is the Fermi vector in 1D. In the following, we will
use the above general expressions to compute �1 in Eq. (8) as
a function of N .

1. Contact interaction

The contact (or delta) interaction is defined as

Vee(x) = η δ(x) (42)

(see the dashed line in Fig. 4) and its Fourier transform is
simply Ṽee(q) = η, where η is a dimensionless constant. The
Hartree energy [Eq. (39)] becomes

U [n] = ηN2

4R
, (43)

and the LDA exchange energy [Eq. (40)] is

ELDA
x = −η

N2

8R
. (44)

We see that, in this case, the calculation of the constrained min-
imization of Eq. (10) does not have a unique minimizing wave
function. Indeed, with the contact interaction the minimum
value 〈V̂ ∞

ee 〉 = 0 can be produced with any wave function that
prevents the electrons to be at the same position while yielding
the assigned density. The strictly correlated wave function is
just one of those. Thus, we trivially obtain �1 = 2, which is
independent of N, and coincides with the lower bound λ̄1 of
Ref. 9.

2. Soft-Coulomb interaction

The soft-Coulomb interaction is defined as

Vee(x) = 1√
x2 + μ2

, (45)

where μ is the softening (or cutoff) parameter. The potential
is visualized as a solid line in Fig. 4. Its Fourier transform is
Ṽee(q) = 2 K0(μq), where K0 is the modified Bessel function
of the second kind.23 This expression leads to the LDA
exchange energy of the form

ELDA
x = −N2

4R

∫ 1

0
dx 2(1 − x) K0

(
πμN

2R
x

)
(46)

= −N2

4R

[
ln

(
4R

πμN

)
+ 3

2
− γ

]
+ O

(
πμN

2R

)2

,

where γ ≈ 0.577 is Euler’s constant. The leading term at small
πμN/(2R) agrees with the result of Fogler.24

The calculation of the Hartree energy leads to a tedious
integral but finally yields an analytic expression,

U [n] = N2

4R

⎧⎪⎨⎪⎩μ/R −
√

4 + (μ/R)2 − ln(μ/R)

+1

2
ln

⎡⎢⎣
(√

4 + (μ/R)2 + 2
)3

√
4 + (μ/R)2 − 2

⎤⎥⎦
⎫⎪⎬⎪⎭

= N2

4R

{
4 ln(2) − 2 − 2 ln

(μ

R

)
+ μ

R
− 1

8

(μ

R

)2

+ 1

256

(μ

R

)4
− 1

3072

(μ

R

)6
+ O

(μ

R

)8
}

, (47)

where we also give the series expansion for small values of
(μ/R), which is the regime of our primary interest (see below).
Finally, the strong-interaction limit for the e-e interaction in
Eq. (38) leads to

〈V̂ ∞
ee (R)〉 = N

R

N∑
i>j

1√
4(i − j )2 +

(
μN

R

)2
. (48)

Similarly to the 3D and 2D case, we may set R = 1. Thus,
values for �1 essentially depend on N and μ, and in ELDA

x

and 〈V̂ ∞
ee (R)〉 also through their product Nμ. Hence, in the

following we fix Nμ and examine numerically the behavior
of �1 as a function of N . As visualized in Fig. 5, we find that
increasing values for Nμ lead to a decrease in �1, whereas
decreasing Nμ leads to an asymptotic approach of �1 toward
two. This tendency is in agreement with the bound λ̄1 = 2
in Ref. 9, where it was assumed that the LO-like bound in
a soft-Coulombic 1D system has the same general form as
Eq. (4) upon the multiplication of the logarithmic factor in
Eq. (46).

3. Regularized interaction

As the third alternative for the e-e interaction in 1D we
consider the regularized form of the Coulomb interaction in
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FIG. 5. (Color online) Values obtained for �1 as a function of
the electron number N with different values for Nμ, where μ is the
softening parameter in the soft-Coulomb interaction.

1D. In particular, we take the representation of the Yukawa
interaction in an infinite cylindrical wire of radius β.21 The
system is then studied in the limit where the (finite) range of
this interaction is larger than any other length scale except the
length of the wire. The resulting interaction potential in the
momentum space is21

Ṽee(q) = eβ2q2
Ei(β2q2), (49)

where Ei(z) is the exponential-integral function.23 In real space
the interaction can be written as

Vee(x) =
√

π

2β
ex2/(4β2) erfc

( |x|
2β

)
, (50)

where erfc(z) = 1 − erf(z) is the complementary error func-
tion. The potential is visualized as a dotted line in Fig. 4.

As can be expected, all terms required to calculate �1

become now rather cumbersome. The LDA exchange energy
is

ELDA
x = −N2

4R

∫ 1

0
dq eq2b2

Ei(−q2b2)(1 − q), (51)

where b = πβN/(2R). The Hartree integral is more straight-
forward to calculate in Fourier space. This leads to

U [n] = 1

2π

∫ ∞

0
dq ñ2(q) Ṽee(q)

= N

2π

∫ ∞

0
dq

sin2(qR)

(qR)2
Ṽee(q)

= π3/2

2

[
β

R
− β

R
eR2/β2 + √

π erfi

(
R

β

)]

− 1

3

R2

β2 pFq

(
1,1; 2,

5

2
;
R2

β2

)
, (52)
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FIG. 6. (Color online) Values obtained for �1 as a function of
the electron number N with different values for Nβ, where β is the
cutoff parameter in the regularized electron-electron interaction.

where erfi is the imaginary error function and pFq is the
generalized hypergeometric function.23 The strong-interaction
limit of the e-e interaction becomes

〈V̂ ∞
ee (R)〉 =

√
π

2β

N∑
i>j

exp

[
R (i − j )

βN

]2

erfc

(
R|i − j |

βN

)
.

(53)

Now, to calculate �1 for the regularized interaction using
the quantities above, we have to restrict the parameter range.
First, ELDA

x in Eq. (51) is unstable for small b, and U [n]
in Eq. (52) is unstable for small β/R. Therefore, in both
cases we numerically compute the series expansions up to
the second order of these quantities. This corresponds to
the physically justified small-β limit of the infinite cylinder.
Second, 〈V̂ ∞

ee (R)〉 is unstable for large R|i − j |/(βN ), so we
again use the series expansion.

In Fig. 6 we show the behavior of �1 as a function of N

with different (small) values of Nβ. As in the soft-Coulombic
case, decrease in the “cutoff” parameter in the e-e interaction
leads to a tendency toward �1 = 2, although in this case the
approach is very slow as a function of Nβ. Nevertheless, the
results are in line with other types of e-e interaction. It should
be noted that for this regularized interaction a LO-like bound
has not been constructed or even proposed before. Therefore,
on the basis of our results above we may suggest λ̄1 = 2 for
the bound, thus agreeing with 1D systems interacting through
contact or soft-Coulomb interaction.

IV. CONCLUSIONS AND PERSPECTIVES

To summarize, we have examined the properties of strictly
correlated electron droplets having a locally uniform density.
In particular, we have used the theory of strictly correlated
electrons to test the validity of the lower bounds proposed
in Ref. 9 on the indirect electron-electron interaction in
D-dimensional quantum systems. We have found that the
bound is satisfied in all dimensions, although it is approached
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as a function of the electron number. In 1D droplets the
bound is reached asymptotically regardless of the type of
electron-electron interaction considered in this work. In 2D
and 3D, we obtain values being a few percent above the lower
bounds.

Our results can be taken as useful reference data for future
investigations of strongly correlated systems in general, as well
as for the development and testing of exchange-correlation
functionals in the framework of density functional theory. In

future work we plan to investigate different densities, trying
to challenge the bound maximally, as well as trying to provide
reference data to construct N -dependent bounds.17
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