4 research outputs found

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities 1,2 . This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity 3�6 . Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55 of the global rise in mean BMI from 1985 to 2017�and more than 80 in some low- and middle-income regions�was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing�and in some countries reversal�of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories. © 2019, The Author(s)

    Corrigendum to "Inclusive J/Psi production in pp collisions at sqrt(s)=2.76 TeV" [Phys. Lett. B 718 (2012) 295] doi : 10.1016/j.physletb.2012.10.078

    No full text

    Erratum to "Rapidity and transverse momentum dependence of inclusive J/ψ production in pp collisions at √s=7 TeV" [Phys. Lett. B 704 (5) (2011) 442]

    Get PDF

    Measurement of jet quenching with semi-inclusive hadron-jet distributions in central Pb-Pb collisions at √sNN = 2.76 TeV

    Get PDF
    We report the measurement of a new observable of jet quenching in central Pb-Pb collisions at â\u88\u9asNN = 2.76 TeV, based on the semi-inclusive rate of charged jets recoiling from a high transverse momentum (high-pT) charged hadron trigger. Jets are measured using collinear-safe jet reconstruction with infrared cutoff for jet constituents of 0.15 GeV, for jet resolution parameters R = 0.2, 0.4 and 0.5. Underlying event background is corrected at the event-ensemble level, without imposing bias on the jet population. Recoil jet spectra are reported in the range 20 T,jetch < 100 GeV. Reference distributions for pp collisions at â\u88\u9as = 2.76TeV are calculated using Monte Carlo and NLO pQCD methods, which are validated by comparing with measurements in pp collisions at â\u88\u9as = 7TeV. The recoil jet yield in central Pb-Pb collisions is found to be suppressed relative to that in pp collisions. No significant medium-induced broadening of the intra-jet energy profile is observed within 0.5 radians relative to the recoil jet axis. The angular distribution of the recoil jet yield relative to the trigger axis is found to be similar in central Pb-Pb and pp collisions, with no significant medium-induced acoplanarity observed. Large-angle jet deflection, which may provide a direct probe of the nature of the quasi-particles in hot QCD matter, is explored
    corecore