454 research outputs found

    Scaling of interfaces in brittle fracture and perfect plasticity

    Get PDF
    The roughness properties of two-dimensional fracture surfaces as created by the slow failure of random fuse networks are considered and compared to yield surfaces of perfect plasticity with similar disorder. By studying systems up to a linear size L=350 it is found that in the cases studied the fracture surfaces exhibit self-affine scaling with a roughness exponent close to 2/3, which is asymptotically exactly true for plasticity though finite-size effects are evident for both. The overlap of yield or minimum energy and fracture surfaces with exactly the same disorder configuration is shown to be a decreasing function of the system size and to be of a rather large magnitude for all cases studied. The typical ``overlap cluster'' length between pairs of such interfaces converges to a constant with LL increasing.Comment: Accepted for publication in Phys. Rev.

    Direct observations of the vacancy and its annealing in germanium

    Get PDF
    Weakly n-type doped germanium has been irradiated with protons up to a fluence of 3×10 exp 14 cm exp −2 at 35 K and 100 K in a unique experimental setup. Positron annihilation measurements show a defect lifetime component of 272±4 ps at 35 K in in situ positron lifetime measurements after irradiation at 100 K. This is identified as the positron lifetime in a germanium monovacancy. Annealing experiments in the temperature interval 35–300 K reveal two annealing stages. The first at 100 K is tentatively associated with the annealing of the Frenkel pair, the second at 200 K with the annealing of the monovacancy. Above 200 K it is observed that mobile neutral monovacancies form divacancies, with a positron lifetime of 315 ps.Peer reviewe

    Climate change projections for variables affecting road networks in Europe

    Get PDF
    Global climate change will affect road networks during this century. The effects will be different in various parts of the world due to differences in local climate change and in the structure and properties of roads. In this paper, climate change projections are presented for climate variables that are most likely to affect the long-term performance of road networks in Europe. We apply four regional climate simulations up to the year 2100 using two plausible future emission scenarios. The results show that the changing climate will require significant adaptation measures in the near future in order to maintain the operability of the European road network

    Failure of planar fiber networks

    Get PDF
    We study the failure of planar random fiber networks with computer simulations. The networks are grown by adding flexible fibers one by one on a growing deposit [K. J. Niskanen and M. J. Alava, Phys. Rev. Lett. 73, 3475 (1994)], a process yielding realistic three dimensional network structures. The network thus obtained is mapped to an electrical analogue of the elastic problem, namely to a random fuse network with separate bond elements for the fiber-to-fiber contacts. The conductivity of the contacts (corresponding to the efficiency of stress transfer between fibers) is adjustable. We construct a simple effective medium theory for the current distribution and conductivity of the networks as a function of intra-fiber current transfer efficiency. This analysis compares favorably with the computed conductivity and with the fracture properties of fiber networks with varying fiber flexibility and network thickness. The failure characteristics are shown to obey scaling behavior, as expected of a disordered brittlematerial, which is explained by the high current end of the current distribution saturating in thick enough networks. For bond breaking, fracture load and strain can be estimated with the effective medium theory. For fiber breaking, we find the counter-intuitive result that failure is more likely to nucleate far from surfaces, as the stress is transmitted more effectively to the fibers in the interior.Peer reviewe

    Brightening of the global cloud field by nitric acid and the associated radiative forcing

    Get PDF
    Clouds cool Earth's climate by reflecting 20% of the incoming solar energy, while also trapping part of the outgoing radiation. The effect of human activities on clouds is poorly understood, but the present-day anthropogenic cooling via changes of cloud albedo and lifetime could be of the same order as warming from anthropogenic addition in CO<sub>2</sub>. Soluble trace gases can increase water condensation to particles, possibly leading to activation of smaller aerosols and more numerous cloud droplets. We have studied the effect of nitric acid on the aerosol indirect effect with the global aerosol-climate model ECHAM5.5-HAM2. Including the nitric acid effect in the model increases cloud droplet number concentrations globally by 7%. The nitric acid contribution to the present-day cloud albedo effect was found to be −0.32 W m<sup>−2</sup> and to the total indirect effect −0.46 W m<sup>−2</sup>. The contribution to the cloud albedo effect is shown to increase to −0.37 W m<sup>−2</sup> by the year 2100, if considering only the reductions in available cloud condensation nuclei. Overall, the effect of nitric acid can play a large part in aerosol cooling during the following decades with decreasing SO<sub>2</sub> emissions and increasing NO<sub>x</sub> and greenhouse gases

    Roughness of Crack Interfaces in Two-Dimensional Beam Lattices

    Full text link
    The roughness of crack interfaces is reported in quasistatic fracture, using an elastic network of beams with random breaking thresholds. For strong disorders we obtain 0.86(3) for the roughness exponent, a result which is very different from the minimum energy surface exponent, i.e., the value 2/3. A cross-over to lower values is observed as the disorder is reduced, the exponent in these cases being strongly dependent on the disorder.Comment: 9 pages, RevTeX, 3 figure

    Identification of the VAl-ON defect complex in AlN single crystals

    Get PDF
    In this Rapid Communication, we report positron annihilation results on in-grown and proton irradiation-induced vacancies and their decoration in aluminium nitride (AlN) single crystals. By combining positron lifetime and coincidence Doppler measurements with ab initio calculations, we identify in-grown VAl−ON complexes in the concentration range 10 exp 18 cm exp −3 as the dominant form of VAl in the AlN single crystals, while isolated VAl were introduced by irradiation. Further, we identify the UV absorption feature at around 360 nm that involves VAl.Peer reviewe

    Quasi-static cracks and minimal energy surfaces

    Get PDF
    We compare the roughness of minimal energy(ME) surfaces and scalar ``quasi-static'' fracture surfaces(SQF). Two dimensional ME and SQF surfaces have the same roughness scaling, w sim L^zeta (L is system size) with zeta = 2/3. The 3-d ME and SQF results at strong disorder are consistent with the random-bond Ising exponent zeta (d >= 3) approx 0.21(5-d) (d is bulk dimension). However 3-d SQF surfaces are rougher than ME ones due to a larger prefactor. ME surfaces undergo a ``weakly rough'' to ``algebraically rough'' transition in 3-d, suggesting a similar behavior in fracture.Comment: 7 pages, aps.sty-latex, 7 figure
    • …
    corecore