
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Author(s): Räisänen, V. I. & Alava, M. J. & Nieminen, Risto M.

Title: Failure of planar fiber networks

Year: 1997

Version: Final published version

Please cite the original version:
Räisänen, V. I. & Alava, M. J. & Nieminen, Risto M. 1997. Failure of planar fiber
networks. Journal of Applied Physics. Volume 82, Issue 8. 3747-3753. ISSN 0021-8979
(printed). DOI: 10.1063/1.365737.

Rights: © 1997 American Institute of Physics. This is the accepted version of the following article: Räisänen, V. I. &
Alava, M. J. & Nieminen, Risto M. 1997. Failure of planar fiber networks. Journal of Applied Physics. Volume
82, Issue 8. 3747-3753. ISSN 0021-8979 (printed). DOI: 10.1063/1.365737, which has been published in
final form at http://scitation.aip.org/content/aip/journal/jap/82/8/10.1063/1.365737.

All material supplied via Aaltodoc is protected by copyright and other intellectual property rights, and
duplication or sale of all or part of any of the repository collections is not permitted, except that material may
be duplicated by you for your research use or educational purposes in electronic or print form. You must
obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or
otherwise to anyone who is not an authorised user.

Powered by TCPDF (www.tcpdf.org)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80716125?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.aalto.fi/en/
http://aaltodoc.aalto.fi
http://www.tcpdf.org


Failure of planar fiber networks
V. I. Räisänen, M. J. Alava, and R. M. Nieminen 
 
Citation: Journal of Applied Physics 82, 3747 (1997); doi: 10.1063/1.365737 
View online: http://dx.doi.org/10.1063/1.365737 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/82/8?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Effects of bending and torsion rigidity on deformation and breakage of flexible fibers: A direct simulation study 
J. Chem. Phys. 136, 074903 (2012); 10.1063/1.3685832 
 
Erratum: “Elasticity of planar fiber networks” [J. Appl. Phys. 98, 093501 (2005)] 
J. Appl. Phys. 105, 109901 (2009); 10.1063/1.3130151 
 
Elasticity of planar fiber networks 
J. Appl. Phys. 98, 093501 (2005); 10.1063/1.2123369 
 
Peridynamic 3D models of nanofiber networks and carbon nanotube‐reinforced composites 
AIP Conf. Proc. 712, 1565 (2004); 10.1063/1.1766752 
 
Rupture luminescence from natural fibers 
J. Chem. Phys. 111, 10314 (1999); 10.1063/1.480379 
 
 

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

130.233.216.27 On: Mon, 27 Jul 2015 05:48:35

http://scitation.aip.org/content/aip/journal/jap?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/931178889/x01/AIP-PT/Asylum_JAPArticleDL_070815/AIP-JAD-Trade-In-Option2.jpg/6c527a6a713149424c326b414477302f?x
http://scitation.aip.org/search?value1=V.+I.+R�is�nen&option1=author
http://scitation.aip.org/search?value1=M.+J.+Alava&option1=author
http://scitation.aip.org/search?value1=R.+M.+Nieminen&option1=author
http://scitation.aip.org/content/aip/journal/jap?ver=pdfcov
http://dx.doi.org/10.1063/1.365737
http://scitation.aip.org/content/aip/journal/jap/82/8?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/136/7/10.1063/1.3685832?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/105/10/10.1063/1.3130151?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/98/9/10.1063/1.2123369?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.1766752?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/111/22/10.1063/1.480379?ver=pdfcov


Failure of planar fiber networks
V. I. Räisänen
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We study the failure of planar random fiber networks with computer simulations. The networks are
grown by adding flexible fibers one by one on a growing deposit@K. J. Niskanen and M. J. Alava,
Phys. Rev. Lett.73, 3475~1994!#, a process yielding realistic three dimensional network structures.
The network thus obtained is mapped to an electrical analogue of the elastic problem, namely to a
random fuse network with separate bond elements for the fiber-to-fiber contacts. The conductivity
of the contacts~corresponding to the efficiency of stress transfer between fibers! is adjustable. We
construct a simple effective medium theory for the current distribution and conductivity of the
networks as a function of intra-fiber current transfer efficiency. This analysis compares favorably
with the computed conductivity and with the fracture properties of fiber networks with varying fiber
flexibility and network thickness. The failure characteristics are shown to obey scaling behavior, as
expected of a disordered brittle material, which is explained by the high current end of the current
distribution saturating in thick enough networks. For bond breaking, fracture load and strain can be
estimated with the effective medium theory. For fiber breaking, we find the counter-intuitive result
that failure is more likely to nucleate far from surfaces, as the stress is transmitted more effectively
to the fibers in the interior. ©1997 American Institute of Physics.@S0021-8979~97!05820-9#

I. INTRODUCTION

Random fiber networks~RFNs! form a class of materials
in which disorder plays a natural role in the mechanical
properties. Whether the system in question is paper, a glass
fiber mat, or a randomly oriented short fiber composite, the
local stresses vary widely. This phenomenon arises from
fluctuations in local stress transfer,1,2 and from local density
variations. For two-dimensional~2D! fiber networks the dis-
tribution of fiber segment lengths, or parts of fibers between
points of intersections between other fibers, is essentially
exponential.3 The distribution of axial stresses in 2D net-
works is exponential even at high densities, and the decay
parameter of the distribution turns out to be independent of
density.4 Very little is known about three-dimensional ran-
dom fiber networks or short fiber composites in terms of how
the disorder affects elastic properties and how it correlates
with local variations in structure.

In the post-elastic regime, the existing knowledge is
even sparser regardless of whether the micromechanical re-
sponse of the fibers and/or the network is assumed to be
brittle, plasticity dominated or even viscoelastic. For 2D
RFNs the local development of yield events~assuming fibers
that yield! is less correlated in the direction perpendicular to
external strain than in lattice models.5,6 Fracture in 2D RFNs
seems to depend qualitatively on whether one allows the
breakdown of fibers or fiber-to-fiber bonds.7 The extension
of such studies4,5,8,9 to 3D structures would seem to be pro-
hibitively heavy computationally, because of detail and also
due to the limitations of the~commercial! Finite Element
Method packages commonly used.

In this paper we present a lattice model for a planar,
layered fiber network. The structure is mapped to a brittle
random fuse network, a scalar lattice model, in order to
achieve numerical efficiency.10 Because of the ‘‘layered’’
geometry11 in the model, the third dimension corresponds
effectively to an adjustable connectivity between fibers in a
2D model. In other words either two fibers, one on the top of
the second, are in contact or there is a pore in between. Our
model is thus designed to emulate the effect of the 3D net-
work geometry on the elastic and strength properties of pla-
nar fiber networks.

What is then known—theoretically—about the structure
the networks studied here? At high enough coverages, the
structure becomes statistically homogeneous in the out-of-
plane direction. For very low coverages there are of course
no pores and the geometry is described exactly by the 2D
limit. In the asymptotic limit the distributions for both pore
height and diameter are exponential,12 as one would also
expect for 2D networks for large pores.3 These local inho-
mogeneities are expected to lead to local stress/current fluc-
tuations. The role of the finite thickness of the system will
thus also depend on how the statistics of the fluctuations
change with coverage.

The computational model used is defined in Sec. II. The
electrical equivalent of the distribution of stresses as well as
that of elastic modulus in the system is derived in Sec. III by
using an effective medium -type argument. In Sec. IV we
discuss the effect of the relative breaking limits of fibers and
bonds on the fracture properties. The numerical results are
presented in Sec. V, and we finish our paper with a discus-
sion of the results in Sec. VI.a!Current address of author.
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II. COMPUTATIONAL MODEL

The fiber networks used are created as follows.11 We
take a fiber to be a beamlike object with finite width and
thickness. Such fibers are deposited one by one on a
xy-oriented substrate with square lattice geometry. The
length and width of the fibers are discretized to integer val-
ues. The location and direction of each fiber~either along the
x or they axis! are chosen randomly.

When a fiber is added to the structure, it is put on the top
of the network below it. If we would be interested in infi-
nitely flexible fibers there would be no pores in between the
new fiber and the old ones. To get a 3D porous network
structure a bending constraint is used. The maximum
z-directional displacement a fiber can make between two
neighboring lattice points is limited to be at mostTf , which
is thus a flexibility parameter. In other words the steps that
the fibers make in thez direction are of finite height, smaller
or equal toTf . A larger value ofTf corresponds simply to
more contacts with underlying fibers.Tf is measured most
conveniently in units of fiber thicknesst f in the z direction,
and thus one can for instance limit the undulation of a fiber
to be at most 0.5 fiber thicknesses over one lattice spacing in
the xy direction (Tf5 0.5!. This gives rise to pores in thez
direction, since a fiber may not be able to bend downwards
enough to touch the one below it. The limit of truly 2D
network is reached whenTf→`.

The structure of the fiber network from the deposition
model is mapped to atopologically equivalentnetwork in a
cubic lattice. By topological equivalence we mean that the
fibers are connected in the same way in both models. In the
cubic lattice model, the fibers are straight and are located in
xy layers.z-directional connections between fibers in differ-
ent layers are formed if the corresponding fibers in the fiber

network from the growth model are in contact~Fig. 1!. Note
that we do not scale the conductivity of the fuses making up
R2 in the figure to keep the total conductivity constant. Also,
the conductivity of the fibers in our simple model is the same
regardless of how the fiber undulates in the structure or is
bent.

In the rest of the paper, we refer to the parts of fibers
between two adjacent connections with other fibers asseg-
ments. The connections between fibers in different layers are
called bonds. Conductivity inside one layer~in a fiber! is
defined usingsxy , and between layers~connection between
two overlapping fibers! it is sz553sxy unless noted other-
wise. This corresponds to easy current flow between layers.
The connection between two lattice points breaks when the
current flowing through it exceeds a predefined threshold.
This threshold for fiber segments isi c

xy and for bonds
i c
z5100i c

xy except for part of the results in Sec. IV.
External voltage is applied in thex direction, and free

boundary conditions are imposed in they and z directions.
The equilibrium distribution of currents is obtained with the
Conjugate Gradient method. The connection between lattice
points with the largest current is removed, after which the
equilibrium state is recalculated. This procedure is continued
until the point is reached in which no current is passing
through the lattice. Systems with sizes 203203Nf ,
503503Nf , and 803803Nf have been used.Nf has been
chosen to correspond to 1.25–6.25 times the geometrical
percolation densityNf ,c of the system. For the flexibility
parameter we have used the valuesTf50.25, 0.5, 1, 2 and 4.
The last value,Tf54, is already a good approximation of the
limit of infinitely flexible fibers.11 Finally, the valuel f57
lattice spacings was used for the length of the fiber. Note that
the model as defined above is a standard random fuse net-
work one, the only differences being that the local geometry
is now obtained from a ‘‘real’’ microstructure and that intra-
layer connections have different breaking and conductivity
properties from the in-plane ones.

In what follows one should take note of the correspon-
dences between electrical and elastical quantities. The RFN
simulations mimic elongative tensile tests withI↔F ~current
corresponds to force!, V↔Dx ~applied voltage corresponds
to imposed elongation! andS↔E ~conductivity corresponds
to elastic modulus!. For the fuse elements one can map the
local current to axial stress~shear stress for intra-fiber bonds!
and the local voltage to strain.

III. CURRENT DISTRIBUTION AND EFFECTIVE
CONDUCTIVITY

Next we use an effective medium approximation
~EMA!-type argument to derive the distribution of currents
in the system and to discuss the scaling of conductivity with
the stress/current transfer~the sz to sxy ratio!. In other
words, the segments in a fiber are thought to be independent
of each other and to be embedded in an average background.
Let us assume that the distribution of segment lengthsl s is
exponential, or

n~ l s!5Ce2a l s. ~1!

FIG. 1. A schematic representation of a detail of the connectivity in the
simulation lattice. The mechanical contact, resulting from bending of a fiber
out of plane~a! is mapped into a bondR2 between layers in the electric
model ~b!.
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Above, C is a normalization constant anda is the decay
parameter of the distribution. The assumption of an exponen-
tial form for the segment length distribution is true for 2D
random fiber networks4 and should also hold12 for the 3D
case of the deposition model.11 Each fiber segment is as-
sumed to consist ofl s ‘‘segment’’-type fuses, each with con-
ductivity ss . In Fig. 2 the relative frequency distributions of
‘‘segment’’ fuses and ‘‘bond’’ fuses belonging to a segment
of length l s are shown versus the segment length.

The fiber segment is supposed to be attached to a homo-
geneous background with two ‘‘bond’’-type fuses with con-
ductivity sb . The total conductivitys f of the fiber segment
is then

s f5
sbss

l ssb12ss
. ~2!

The current in the sequence consisting of a fiber segment and
two bonds can be expected to be proportional to its conduc-
tivity per length unit, i.e.,

s f

ssl s
5

1

11 ~2/l s!~ss /sb!
} i . ~3!

The current distributionn( i ) can be solved from Eqs.~1! and
~3! by making a change of variable in the distribution:

n~ i !5n~ l s!
] i

] l s
. ~4!

Taking into account that there arel s ‘‘segment’’ fuses and
two ‘‘bond’’ fuses for each segment, we finally get

n~ i !5C
ss

sb
~12 i !2S 11

ss

sb

i

12 i DexpS 22a
ss

sb

i

12 i D .

~5!

Above, current per bond has been expressed in the units of
current flowing through a fuse with conductivityss .

The calculation gives an exponential decay for the cur-
rent distribution for relatively large values ofa ~Fig. 3!. In
the 2D limit, a is inversely proportional to density of fibers
per unit area.3 In the limit in which the fiber network struc-
ture becomes statistically invariant—except for the upper

and lower surfaces—a is related to the pore number,11,12 i.e.,
the probability that a fiber is not in contact with the one
below or above it. However, the dependence is nontrivial in
the interesting regimeTf;1. To give the reader an idea, the
average coordination number or the probability that a fuse
belonging to a fiber segment is connected to another seg-
ment’s is Pc'0.5 for Tf51 and Pc'0.16 for Tf50.25.
Also, the local Poissonian density fluctuations are expected
to create rare configurations that contribute to the high-
current end of the current distribution, but not to the global
conductivity.13

Using our result for the conductivity per length unit of a
fiber, Eq.~3!, a Kirkpatrick-type calculation14 can be made to
obtain the effective conductivityse f f of a lattice consisting
of segment and bond fuses. The essential part of the calcu-
lation is to derive an equation for the conductivity of a lattice
using the knowledge that the average value of voltage fluc-
tuations~with respect to the average value of voltage in the
system! is zero. This leads to the equation

05 K se f f2s

se f f1s L , ~6!

where the effective conductivity of the background has been
denoted withse f f and the fluctuating local conductivity with
s.

In our case the current distribution, Eq.~5!, is equal to
the distribution of conductivities whereby Eq.~6! is equiva-
lent to the integral

05E
a

b

n~ i !
se f f2 i

se f f1 i
di, ~7!

from which se f f can, in principle, be solved. Above, the
integration limitsa andb for current are obtained from Eq.
~3! by inserting alternativelyl s51 ~minimum segment
length, i.e., the lattice constant! and l s5 l f ~fiber length!. We
have calculated a few numerical approximations for the so-
lution of Eq. ~7!, corresponding to the average conductivity
per unit area in the limit in which the thickness of the fiber
network is large. These are given in Fig. 4. As an example,
let us consider the case that we have made the numerical
simulations withss /sb50.2. For this particular ratio of con-

FIG. 2. The relative frequencies of bond~solid line! and segment~dashed
line! type fuses plotted against the length of the segment they are parts of. In
the data shown,a51.

FIG. 3. Current distribution~both bond and segment fuses! obtained using
the effective medium argument. From top to bottom:a51, 5, 10, 50, and
100.ss /sb52/5.
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ductivities, se f f'0.72– 0.793ss for a51 – 100. We also
plot the development ofse f f(ss /sb) which is obtained by
using the mean segment length instead of the trueP( l s) dis-
tribution. As can be expected, the results differ quite a bit
from the ‘‘full’’ l f data for small values ofa ~i.e., broad
segment length distribution!. For a more steep segment
length distribution the ‘‘averaged’’ data agree very well with
the results obtained withP( l f). This is just an indication that
the average segment length is approximately equal to unity.

If the distribution of conductivities decays quickly,
ss /sb has a stronger effect on the total conductivitys tot

since there are more short segments wheresb is relatively
more important. If one looks at the effect of the decay pa-
rameter as a function ofss /sb , it is clearly seen that the
larger the conductivity of the ‘‘bond’’ fuses is, the lessa
affectss tot . At the limit sb→`, s tot→1 in units ofss and
at the limitsb→0, s tot→0 as can be expected. In the former
case the currents are the same for all segments independent
of l s and in the latter case all current goes through the long-
est (l s5 l f) segments.

IV. THE EFFECT OF BREAKING LIMITS AND THE
EFFECTIVENESS OF INTER-LAYER CURRENT
TRANSFER

Next we test the consequences of the ratio of the break-
ing limits of bonds and fiber segments,r 15 i c

z/ i c
xy , and the

ratio of the intra-layer conductivity to that inside the layers,

r 25sz /sxy . In the case of the elastic problem, correspond-
ing quantities would be the ratios of the breaking stresses
(r 1) and of elastic moduli (r 2).

Depending on the values chosen forr 1 and r 2, one
would expect two general, different scenarios: if the bonds
are weak~small r 1), much delocalized damage is expected.15

This is similar to the accumulation of matrix damage in short
fiber composites, when the fibers are less prone to failure
than the matrix. On the other hand, if the fibers are weak
~larger 1), the failure of the network should be governed by
‘‘rare event’’-type statistics, i.e., the strongest current con-
centration that the network geometry produces sets the frac-
ture point.16 In between these two extremes, when both the
fibers and ‘‘the matrix’’ are weak, one expects to see cross-
over behavior.

To characterize the failure process, we have studied
whether the broken connections are aligned in thez direction
~a bond! or inside thexy plane~part of a fiber!. These were
designated withNb

z andNb
xy , respectively. The total number

of broken connections is thenNb5Nb
z1Nb

xy . We also com-
pare the macroscopic failure currentI b ~force in the elastic
case! and voltageVb ~displacement!, and vary the bond
quantitiesi c

z and sz to have comparable results. A system
size of 4.5 fiber lengths in linear dimension (4.53 l f lattice
spacings! and an areal density of fibers that is 3.75 times the
2D percolation coverage are used. The value of the flexibility
parameterTf is one here.

The results show that oncer 1.2 ~i.e., the breaking limit
of fiber segments is at least two times lower than that of
bonds!, r 1 has no further effect on any ofVb , I b or Nb . Thus
data withr 1.2 is not included. In fact, ifr 1.1, neitherr 1

nor r 2 has a significant effect onNb or I b ~Table I!. Natu-
rally, the breaking potentialVb increases with decreasing
conductivity between layers independent ofr 1. As can be
expected, only bonds break ifr 1,0.5, whereas ifr 1.1 only
fibers do so. Ifi c

z5 i c
xy , fracture takes place mostly in fiber

segments because the external current is flowing in thex
direction. The weak bond result shows that one cannot in-
crease the toughness of a fiber network by inhibiting fiber
failure with weak matrix/contacts.

Large fluctuations show up in the breaking potential
when the conductivity between layers is small (r 250.1).
Physically, this means that the system is brought closer to the
percolation threshold due to increasing isolation of layers.
The scaling of the breaking potential is approximately
Vb;r 2

20.3. When bonds are weaker than fiber segments
(r 1,1), Nb increases and bothVb and I b decrease with de-

FIG. 4. Effective conductivity (se f f) as obtained from the effective medium
calculation@Eq. ~7!#. ~L! a51, ~1! a510, ~h! a5100; lines from top to
bottom:a5100, 1.5 and 1 for the prediction which is obtained by using the
mean value of fiber length in Eq.~3! instead of the full distribution@Eq. ~1!#.

TABLE I. Scaling ofVb , I b , Nb
xy andNb

z as functions ofr 1 and r 2. System size is 4.534.5 fiber lengths,Tf51 andNf53Nf ,c .

r 2\r 1

Vb I b Nb
xy/Nb

z

0.1 0.5 1.0 2.0 0.1 0.5 1.0 2.0 0.1 0.5 1.0 2.0

0.1 10.461.2 48.666.1 80 628 75 619 1.560.6 6.660.8 9.461.5 9.261.1 0/416 6 262 / 3265 2664 / 764 3464/0
0.5 4.460.4 22.062.0 30.46 1.0 31.06 1.9 1.560.2 7.660.8 11.061.6 10.661.9 0/4267 262 / 3364 1964 / 662 3166/0
1.0 3.560.4 17.761.9 23.46 0.2 24.46 1.5 1.660.2 8.161.0 10.861.3 10.961.4 0/3962 161 / 3364 2461 / 462 2866/0
2.0 3.060.3 15.261.7 19.66 1.7 20.56 2.3 1.660.2 8.260.8 11.360.3 11.561.2 0/4164 261 / 3566 1964 / 563 2867/0
4.0 2.660.2 13.261.0 17.06 0.7 18.06 2.3 1.660.2 8.261.0 11.361.0 11.761.6 0/4669 261 / 3769 2166 / 463 2565/0
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creasingr 1. The scaling of the fracture quantities as a func-
tion of r 1 is approximatelyNb;er 1/1.7 and bothVb and
I b; ln(r1). Except for the case ofVb , r 2 has no effect on
fracture characteristics whenr 1,1. The total number of bro-
ken connections saturates to a constant value ati c

z' i c
xy . Both

the breaking potential and the breaking current are linearly
decreasing functions ofr 1 when r 1,1. The valuesr 15100
and r 255 used by us in the subsequent simulations have
been chosen to be in the ‘‘safe’’ region, where well-defined
pure fiber-breaking behavior is seen.

Interestingly, bothVb and I b change linearly as a func-
tion of r 1 when r 1,1. This suggests that in this regime
~breaking takes place mostly in bonds! EMA -type argumen-
tation may be used to obtain predictions for fracture load. It
is understandable that the effective medium argument works
better in the case of bond fracture as the changes of the
current in a fiber after a bond failure are much more gradual.

V. BRITTLE FAILURE OF FIBER NETWORKS

Next we embark on a study of the failure characteristics
of planar fiber networks in the regime where fiber failure is
the dominating process. We have chosen to study this case
first because it is numerically much easier than the ‘‘bond-
breakage’’ one, and second because it is directly comparable
to earlier random-fuse network simulations of the failure of
brittle materials and composites.10,15,16.

The conductivity stays approximately constant for
Tf52 – 4 andNf55Nf ,c when the system dimensions are
varied. WhenTf<1, the conductivity is reduced slightly
with increasing system size. Close to the connectivity perco-
lation point,Nf'Nf ,c , the conductivity decreases more rap-
idly, indicative of an increasing correlation length in the sys-
tem. Figure 5 shows the scaling ofse f f as a function of
ss /sb . The results show that the effective medium theory
gives quite a good prediction forse f f(ss /sb) when a is
large. The decay ofse f f with decreasingss /sb is slightly
slower in the true simulation data than in the EMA results.
Moreover, at the limit of well-conducting bondsse f f is
larger in the former. The shape of the numerically obtained

conductivity resembles results obtained for 2D random fiber
networks when fiber–to–fiber bonds are included.4 The dif-
ference to the EMA calculation of Sec. II may be partly due
to the fact that the coverage or effective thickness is still
rather limited~six times the percolation density!.

The breaking potentialVb is roughly constant as a func-
tion of Nf , except for very rigid fibers (Tf50.25) at densi-
ties close to the percolation point~Fig. 6!. On approach to
the percolation point, an increase in the breaking potential
similar to that seen in, e.g., diluted lattice models16 is ob-
served. This effect is made stronger by a decrease in the
effective density due to loss of connectivity in the system
resulting from the increasing rigidity of the fibers asTf is
decreased. In any case, our model differs in that respect from
what one would expect for a disordered brittle fuse model
with a 2D/3D transition, asVb does not seem to relate toNf .
On the experimental side, this compares with the finding that
the elastic breaking strain~defined with the relation
eel5sc /E) is of the order of 1% irrespective of the basis
weight of paper or bondedness of the network.17

Based on the three system sizes simulated (203203Nf ,
503503Nf , and 803803Nf), the finite size scaling of the
breaking potential follows approximately the 2D extreme
scaling,16 Vb;L/Aln L for all the values ofTf with constant
Nf . Since we only have three system sizes available, it is
impossible to obtain the accurate form of the finite size scal-
ing. The rupture currentI b displays saturation as a function
of Tf as expected, and is a linear function ofNf , scaling as
I b;L0.820.9 for constantNf for all values ofTf . Alterna-
tively, I b can be fitted quite well with an extreme scaling-
type form.16 The small number of system sizes simulated
prevents us from differentiating between the two cases.

The distribution of currents in the connections saturates
if the fibers become very flexible. A less obvious result is the
saturation of the high current end of the distribution also as a
function ofNf , which can be perceived in Fig. 7. The simple
conclusion is that this is another sign of the effective ‘‘2D’’
nature of the networks. This is because the distribution of
segment stresses in a two-dimensional random fiber system
saturates in the same way.4,7 Please note that the number of

FIG. 5. Effective conductivity of the lattice obtained from numerical data.
Tf51, system size57l f37l f . ~n! Nf56.25Nf ,c , ~X! Nf55Nf ,c , ~h!
Nf53.75Nf ,c , ~1! Nf52.5Nf ,c , ~L! Nf51.25Nf ,c . In comparing the
simulation results to Fig. 4, please note that here conductivity grows with
Nf . In Fig. 4 the maximum conductivity is always equal to unity.

FIG. 6. Breaking potential as a function of fiber flexibility for
Nf51 – 53Nf ,c for a system of size 11l f311l f in the xy plane. ~n!
Nf56.25Nf ,c , ~X! Nf55Nf ,c , ~h! Nf53.75Nf ,c , ~1! Nf52.5Nf ,c , ~L!
Nf51.25Nf ,c .
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small currents does not seem to saturate equally well. Except
for the small values of the currents, the curves can be quite
well collapsed on top of each other by equating the integrals
of the individual distributions.

We also analyzed the distributions of currents depending
on the location of the bond/fiber in the network in the out-
of-plane direction. This was done by plotting both the local
average current and the largest current as functions of thez
coordinate of the layer~Fig. 8!. The total current was com-
puted by summing the absolute values of currents in all the
three principal directions in the lattice for each lattice point
and the maximum current was obtained by choosing the larg-
est of the absolute values of the three currents in the princi-
pal directions. After this was done, the currents with the
samez coordinate were summed in both cases. The figures
indicate that the current distribution is slightly nonuniform,
but much less so for the maximum currents. The anisotropy
comes from the way the networks are formed: as a three-
dimensional structure is being grown, the network surface is
rough,11 which makes the actual fiber density in the top lay-
ers smaller. This naturally results in a ‘‘smaller’’ value for
total current in there. In view of these results, the constancy
of the current distributions seems to stem from most of the
current in all layers being quite small, whereby only the low
end of the current distribution is affected by the increase in
the number of layers. A close inspection of the figures re-

veals that there is a small increase in the number of currents
at the highest end of the current distribution. Large values of
i are indicative of current flowing through narrow bridges
between larger-than-average pores in the system.

The best guess as to why the high current end of the
current distribution saturates would be that the defects or
inhomogeneities that give rise to it are ‘‘in-plane’’ and thus
the addition of more layers of fibers plays no role. If an
increasing network thickness would give rise to truly 3D
‘‘defect geometries’’ this would be visible as changes in the
distribution as well. Of course, judging such differences
from our data may be difficult. The slope of the current dis-
tribution ~Fig. 7! does not depend onTf . This may seem
surprising at first sight, but the explanation is quite natural.
WhenTf is increased~i.e., fibers are made more flexible!, the
average segment length is reduced. The current going
through the lattice is redistributed among the shorter seg-
ments. Due to the fact that the tail of the current distribution
n( i ) is exponential, the form of the distribution is not af-
fected, although the tail is moved upwards. This can be seen
in Fig. 7 both from the absolute scale and the relative height
of the zero-current peak.

On the other hand, the system size has an effect on the
slope of the tail. If the tail of the distribution is parametrized

FIG. 7. Current distributions for several values ofNf . System size is
4.5l f34.5l f in the xy plane,Tf50.25 ~a! and 4.0~b!. ~n! Nf56.25Nf ,c ,
~X! Nf55Nf ,c , ~h! Nf53.75Nf ,c , ~1! Nf52.5Nf ,c , ~L! Nf51.25Nf ,c .

FIG. 8. Total current in all of the three lattice directions~a! and maximum
current ~b! as a function of the height from the substrate surface. Single
simulation result. System size is 4.5l f34.5l f and Tf51. ~—! Nf55Nf ,c ,
~–––! Nf53.8Nf ,c , ~.......! Nf52.5Nf ,c .
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asn( i );e2b i , for L53, 7 and 113 l f the decay parameters
are b5166, 200, and 400, respectively. This steepening of
the distribution can be attributed to boundary effects. The
high-end tail of the current distribution is always exponen-
tially independent ofTf , which indicates that the effective
medium model@Eq. ~5!# presented earlier does not work for
low values ofTf . Like the other breaking quantities, the total
number of broken connections saturates with increasingTf .
Nb is approximately a linear function ofNf with a finite size
scalingNb;L0.921.1 for all Tf for constantNf . For compari-
son, the random breaking limit model in 2D givesNb;L 1
const for weak disorder andNb;L1L1.6 for strong one.
This result is an indication of the brittle nature of fracture in
the system and shows that in our simulations, networks fail
by the formation of a roughly linear crack from a seed defect.

VI. DISCUSSION

We have analyzed the fracture of planar fiber networks
with a simple lattice model for the electrical analogue of
brittle elastic failure. The goal has been the study of the role
of the geometrical inhomogeneities in the fracture processes,
especially the inclusion of naturally occurring pores in such
systems. The main finding is that at least in the fiber-failure
controlled regime the networks become quasi- 2D regardless
of the thickness. This concept together with the numerical
results in general indicate that the failure of the networks is
induced by ‘‘internal defects,’’ i.e., by geometry fluctuations
away from the network surfaces, because on the surface the
connectivity and average current are lower than in the inside
of the sample.

We have also analyzed the role of the intra-fiber current
transfer and the segment length distributions with an Effec-
tive Medium Approximation-type calculation. Comparisons
with numerical simulation results for the conductivity agree
qualitatively except perhaps for very efficient current transfer
~rigid intra-layer bonds in the elastic case!. In that case the
EMA theory may underestimate the conductivity~resp. elas-
tic modulus! of the system. It can also be used to analyze the
qualitative dependence of the failure point on the ‘‘stress
transfer efficiency,’’ and we find that the fracture voltage
~corresponding to fracture strain! has a negative power law
dependence on the conductivity of the bonds.

The number of broken connections, being dependent on
the connectivity in the system, saturates as a function of fiber
flexibility. The results indicate that the current flowing
through the system consists of a ‘‘bulk’’ component and a
‘‘tail’’ part, the latter of which appears to be independent in
form of the number of fibers. The bulk part grows steadily
with the number of fibers in the system. This is similar to

what has been seen in mechanical Finite Element Method
simulations of 2D random fiber networks. These observa-
tions reinforce the main point of our paper.

The expected fracture characteristics of brittle, planar
fiber networks have here been shown to comply with generic
2D models for the failure of disordered media. This includes
similar size-scaling behavior forVb and I b , and trivial-type
damage scaling as the fraction of fibers breaking versus sys-
tem size. It would thus be interesting to compare by simulat-
ing the effect ofi c

z/ i c
xy in the region where it is smaller than

unity, i.e., in the ‘‘bond breaking’’ territory. From the ex-
perimental point of view the result that the failure voltage
~‘‘stress’’! does not depend on network thickness is a verifi-
able prediction and agrees with what is known about the
failure of fiber networks in the form of paper.
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