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Failure of planar fiber networks

V. |. Raisanen
Centre for Scientific Computing, P. O. Box 405, FIN-02101 Espoo, Finland
and ICAL, University of Stuttgart, Pfaffenwaldring 27, D-70569 Stuttgart, Gerfhany

M. J. Alava and R. M. Nieminen
Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, HUT 02015

(Received 18 March 1997; accepted for publication 11 July 1997

We study the failure of planar random fiber networks with computer simulations. The networks are
grown by adding flexible fibers one by one on a growing defd#sitl. Niskanen and M. J. Alava,
Phys. Rev. Lett73, 3475(1994], a process yielding realistic three dimensional network structures.
The network thus obtained is mapped to an electrical analogue of the elastic problem, namely to a
random fuse network with separate bond elements for the fiber-to-fiber contacts. The conductivity
of the contactgcorresponding to the efficiency of stress transfer between fieesljustable. We
construct a simple effective medium theory for the current distribution and conductivity of the
networks as a function of intra-fiber current transfer efficiency. This analysis compares favorably
with the computed conductivity and with the fracture properties of fiber networks with varying fiber
flexibility and network thickness. The failure characteristics are shown to obey scaling behavior, as
expected of a disordered brittle material, which is explained by the high current end of the current
distribution saturating in thick enough networks. For bond breaking, fracture load and strain can be
estimated with the effective medium theory. For fiber breaking, we find the counter-intuitive result
that failure is more likely to nucleate far from surfaces, as the stress is transmitted more effectively
to the fibers in the interior. €1997 American Institute of Physid$§0021-897@7)05820-9

I. INTRODUCTION In this paper we present a lattice model for a planar,
layered fiber network. The structure is mapped to a brittle
Random fiber networkRFNs form a class of materials  random fuse network, a scalar lattice model, in order to

in which disorder plays a natural role in the mechanicalychieve numerical efficiendy. Because of the “layered”

properties. Whether the system in question is paper, a gla%‘gseometrfl1 in the model, the third dimension corresponds

fiber mat, or a randomly oriented short fiber composite, theeffectively to an adjustable connectivity between fibers in a

local stresses vary widely. This phenomenon arises fro . .
fluctuations in local stress transfef and from local density n}D model. In oth_er words either two.flbers, on_e on the top of
the second, are in contact or there is a pore in between. Our

variations. For two-dimension&2D) fiber networks the dis- ' i
tribution of fiber segment lengths, or parts of fibers betweeriNodel is thus designed to emulate the effect of the 3D net-

points of intersections between other fibers, is essentialljvork geometry on the elastic and strength properties of pla-
exponentiaf The distribution of axial stresses in 2D net- har fiber networks.

works is exponential even at high densities, and the decay What is then known—theoretically—about the structure
parameter of the distribution turns out to be independent othe networks studied here? At high enough coverages, the
density? Very little is known about three-dimensional ran- structure becomes statistically homogeneous in the out-of-
dom fiber networks or short fiber composites in terms of howplane direction. For very low coverages there are of course
the disorder affects elastic properties and how it correlatefg pores and the geometry is described exactly by the 2D
with local variations in structure. ~limit. In the asymptotic limit the distributions for both pore

In the post-elastic regime, the existing knowledge iSpgight and diameter are exponenifilas one would also
even sparser regardless of whether the micromechanical r%i(pect for 2D networks for large poréhese local inho-

sponse of the fibers and/or the network is assumed to be o
. - : : : mogeneities are expected to lead to local stress/current fluc-
brittle, plasticity dominated or even viscoelastic. For 2D

RFNSs the local development of yield everassuming fibers tuations. The role of the finite thickrlegs of the system Yvill

that yield is less correlated in the direction perpendicular tothUS also depend on how the statistics of the fluctuations
external strain than in lattice modét§ Fracture in 2D RFNs ~ change with coverage.

seems to depend qualitatively on whether one allows the The computational model used is defined in Sec. Il. The
breakdown of fibers or fiber-to-fiber bonlg.he extension electrical equivalent of the distribution of stresses as well as
of such studie&®>®°to 3D structures would seem to be pro- that of elastic modulus in the system is derived in Sec. Il by
hibitively heavy computationally, because of detail and alsausing an effective medium -type argument. In Sec. IV we

due to the limitations of thécommercial Finite Element discuss the effect of the relative breaking limits of fibers and

Method packages commonly used. bonds on the fracture properties. The numerical results are
presented in Sec. V, and we finish our paper with a discus-
dCurrent address of author. sion of the results in Sec. VI.
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network from the growth model are in contdfig. 1). Note
that we do not scale the conductivity of the fuses making up
R2 in the figure to keep the total conductivity constant. Also,
the conductivity of the fibers in our simple model is the same
regardless of how the fiber undulates in the structure or is
bent.

In the rest of the paper, we refer to the parts of fibers
between two adjacent connections with other fiberses
ments The connections between fibers in different layers are

(a) called bonds Conductivity inside one layefin a fibep is
- defined usingr,,, and between layer®onnection between
T AARAlA tvx_/o over!apping fibersit is o,=5X g, unless noted other-
Yvy Wy— wise. This corresponds to easy current flow between layers.

The connection between two lattice points breaks when the
current flowing through it exceeds a predefined threshold.
This threshold for fiber segments is¥ and for bonds
iZ=1007%" except for part of the results in Sec. IV.
External voltage is applied in the direction, and free
boundary conditions are imposed in theandz directions.
X (b) The equilibrium distribution of currents is obtained with the
Conjugate Gradient method. The connection between lattice
FIG. 1. A schematic representation of a detail of the connectivity in thepoints with the largest current is removed, after which the
simulation Iatticg. The mechanical contact, resulting from b_ending of afiberequ”ibrium state is recalculated. This procedure is continued
out of plane(a) is mapped into a bon&2 between layers in the electric . L. . . . .
model (b). until the point is reached in which no current is passing
through the lattice. Systems with sizes X2BOX N,
50X 50X Ns, and 80<80X N; have been usedN; has been
Il. COMPUTATIONAL MODEL chosen to correspond to 1.25-6.25 times the geometrical

The fiber networks used are created as folldvgve  Percolation densityN¢ . of the system. For the flexibility

take a fiber to be a beamlike object with finite width and parameter we have u.sed the vallles- 0.25, 0'5’. L, 2 and 4.
thickness. Such fibers are deposited one by one on he last valueT =4, is already a good approximation of the

xy-oriented substrate with square lattice geometry. Th(%'mi.t of infir_1ite|y flexible fibers:™ Finally, the "‘.""“e'f:7
length and width of the fibers are discretized to integer val-attice spacings was used for the length of the fiber. Note that

ues. The location and direction of each filgeither along the the model as defmeq above is a standard random fuse net-
x or they axis) are chosen randomly. work one, the only differences being that the local geometry

When a fiber is added to the structure, it is put on the to

qs now obtained from a “real” microstructure and that intra-
of the network below it. If we would be interested in infi- ‘aYer connections have different breaking and conductivity
nitely flexible fibers there would be no pores in between th

é)roperties from the in-plane ones.
new fiber and the old ones. To get a 3D porous network In what follows one should take note of the correspon-
structure a bending constraint is used. The maximu

ences between electrical and elastical quantities. The RFN
z-directional displacement a fiber can make between tw

éimulations mimic elongative tensile tests with- F (current
neighboring lattice points is limited to be at mdst, which corresponds to forgeV« Ax (applied voltage corresponds
is thus a flexibility parameter. In other words the steps tha

{o imposed elongatiorands, < E (conductivity corresponds
the fibers make in the direction are of finite height, smaller Ito ellastlc modulu); Ilzor the ;use elemefnts.one ]S’Sn nl;apdthe
or equal toT;. A larger value ofT; corresponds simply to 0@ current to axial stredshear stress for intra-fiber bonds
more contacts with underlying fiber$; is measured most

and the local voltage to strain.
conveniently in units of fiber thicknegs in the z direction,
and thus one can for instance limit the undulation of a fiber
to be at most 0.5 fiber thicknesses over one lattice spacing itil. CURRENT DISTRIBUTION AND EFFECTIVE
the xy direction (T;= 0.5). This gives rise to pores in tre ~ CONDUCTIVITY
direction, since a fiber may not be able to bend downwards
enough to touch the one below it. The limit of truly 2D
network is reached whemh;— oo,

R2 R1

Next we use an effective medium approximation

(EMA)-type argument to derive the distribution of currents

The structure of the fiber network from the depositionm the system and to discuss the scaling of (_:onductlwty with
the stress/current transféthe o, to o,, ratio). In other

model IS 'mapped to topqlogmally equivalenhetwork in a words, the segments in a fiber are thought to be independent
cubic lattice. By topological equivalence we mean that the .
fibers are connected in the same way in both models. In thOf each other and to be embedded in an average background.

cubic lattice model, the fibers are straight and are located irEet us assume that the distribution of segment lenggfis

xy layers.z-directional connections between fibers in differ- exponential, or
ent layers are formed if the corresponding fibers in the fiber n(lg)=Ce™“'s, (h)

3748 J. Appl. Phys., Vol. 82, No. 8, 15 October 1997 Raisanen, Alava, and Nieminen
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'.:IG' 2. The relative freque_ncies of borteblid line) and segmen(dashed FIG. 3. Current distributiorfboth bond and segment fugesbtained using
line) type fuses plotted against the length of the segment they are parts of. I{F]e effective medium argument. From top to bottam: 1, 5, 10, 50, and

the data showng=1. 100. o5/ o, =2/5.

and lower surfaces-a-is related to the pore numbgr*?i.e.,
Above, C is a normalization constant and is the decay the probability that a fiber is not in contact with the one
parameter of the distribution. The assumption of an exponerbelow or above it. However, the dependence is nontrivial in
tial form for the segment length distribution is true for 2D the interesting regim&;~1. To give the reader an idea, the
random fiber networksand should also hold for the 3D  average coordination number or the probability that a fuse
case of the deposition mod€l.Each fiber segment is as- belonging to a fiber segment is connected to another seg-
sumed to consist df “segment’-type fuses, each with con- ment’s is P.~0.5 for T;=1 and P,~0.16 for T;=0.25.
ductivity o5. In Fig. 2 the relative frequency distributions of Also, the local Poissonian density fluctuations are expected
“segment” fuses and “bond” fuses belonging to a segmentto create rare configurations that contribute to the high-
of lengthl are shown versus the segment length. current end of the current distribution, but not to the global
The fiber segment is supposed to be attached to a homeonductivity®

geneous background with two “bond”-type fuses with con- Using our result for the conductivity per length unit of a
ductivity o,. The total conductivitys; of the fiber segment fiber, Eq.(3), a Kirkpatrick-type calculatiolf can be made to
is then obtain the effective conductivity.¢; of a lattice consisting

of segment and bond fuses. The essential part of the calcu-
2) lation is to derive an equation for the conductivity of a lattice

using the knowledge that the average value of voltage fluc-
The current in the sequence consisting of a fiber segment arfgiations(with respect to the average value of voltage in the
two bonds can be expected to be proportional to its conducsystem is zero. This leads to the equation

Op0s
Oft=7~ .
f ISO'b+2(TS

tivity per length unit, i.e., Oofi— 0
0={— , (6)
A 1 i 3) Teftt
ods 1+ (2N (aslap) where the effective conductivity of the background has been
The current distributiom(i) can be solved from Eq¢l) and  denoted witho¢; and the fluctuating local conductivity with
(3) by making a change of variable in the distribution: .
) In our case the current distribution, E@), is equal to
n(i)= n(ls)ﬂ. (4 the distribu_tion of conductivities whereby E@) is equiva-
s lent to the integral
Taking into account that there alg “segment” fuses and b oep—i
two “bond” fuses for each segment, we finally get 0—] n(i) ———di, (7)
a OeftT|
n(i)zcﬁ(l_i)z 1+$'__) ex;{—ZaE '_) from which o4 can, in principle, be solved. Above, the
Ob op 1-i op 1-i integration limitsa andb for current are obtained from Eq.

(3) by inserting alternativelylg=1 (minimum segment

Above, current per bond has been expressed in the units &éngth, i.e., the lattice constarandl =1 (fiber length. We
current flowing through a fuse with conductivity . have calculated a few numerical approximations for the so-

The calculation gives an exponential decay for the curdution of Eq. (7), corresponding to the average conductivity
rent distribution for relatively large values of (Fig. 3. In per unit area in the limit in which the thickness of the fiber
the 2D limit, « is inversely proportional to density of fibers network is large. These are given in Fig. 4. As an example,
per unit ared. In the limit in which the fiber network struc- let us consider the case that we have made the numerical
ture becomes statistically invariant—except for the uppesimulations withos/o,=0.2. For this particular ratio of con-

J. Appl. Phys., Vol. 82, No. 8, 15 October 1997 Raisanen, Alava, and Nieminen 3749



1g— . , . r,=o,loyy. Inthe case of the elastic problem, correspond-
““““““ ] ing quantities would be the ratios of the breaking stresses
o0sl % | (r,) and of elastic modulir,).

Depending on the values chosen foy and r,, one
would expect two general, different scenarios: if the bonds
are weakismallr;), much delocalized damage is expected.
This is similar to the accumulation of matrix damage in short
fiber composites, when the fibers are less prone to failure
than the matrix. On the other hand, if the fibers are weak
(larger), the failure of the network should be governed by
° ; “rare event’-type statistics, i.e., the strongest current con-
centration that the network geometry produces sets the frac-
ture point!® In between these two extremes, when both the

fibers and “the matrix” are weak, one expects to see cross-
FIG. 4. _Effective conductivity ) as obtained from the_effective medium over behavior.
calculation[Eq. (7)]. (¢) a@=1, (+) =10, () @=100; lines from top to . . .
bottom: &= 100, 1.5 and 1 for the prediction which is obtained by using the 10 characterize the failure process, we have studied
mean value of fiber length in EB) instead of the full distributiofEq. (1)]. whether the broken connections are aligned inzthiéection

(a bond or inside thexy plane(part of a fibe). These were

designated wittNf andN}Y, respectively. The total number
ductivities, oe1~0.72—0.7% og for a=1-100. We also of broken connections is the,=Ng+Np”. We also com-
plot the development ofr.¢{(os/0},) Which is obtained by pare the macroscopic failure current (force in the elastic
using the mean segment length instead of the Br(lg) dis-  case and voltageVy, (displacement and vary the bond
tribution. As can be expected, the results differ quite a bitquantitiesiZ and o, to have comparable results. A system
from the “full” |; data for small values ofr (i.e., broad size of 4.5 fiber lengths in linear dimension (4.5 lattice
segment length distribution For a more steep segment spacingsand an areal density of fibers that is 3.75 times the
length distribution the “averaged” data agree very well with 2D percolation coverage are used. The value of the flexibility
the results obtained witR(l;). This is just an indication that parameteiT; is one here.
the average segment length is approximately equal to unity. The results show that oncg>2 (i.e., the breaking limit

If the distribution of conductivities decays quickly, of fiber segments is at least two times lower than that of
os/op has a stronger effect on the total conductivity,,  bonds, r; has no further effect on any ®,, I, or N, . Thus
since there are more short segments wheyas relatively — data withr;>2 is not included. In fact, if ;> 1, neitherr
more important. If one looks at the effect of the decay panorr, has a significant effect oN, or I, (Table ). Natu-
rameter as a function aofs/oy, it is clearly seen that the rally, the breaking potentiaV/,, increases with decreasing
larger the conductivity of the “bond” fuses is, the leas  conductivity between layers independentrgf As can be
affectsayo; . At the limit op— 0, o—1 in units ofos and  expected, only bonds breakrif<0.5, whereas if ;> 1 only
at the limito,—0, 010;— 0 as can be expected. In the former fipers do so. IfiZ=i%Y, fracture takes place mostly in fiber
case the currents are the same for all segments independejeigments because the external current is flowing inxthe
of Is and in the latter case all current goes through the longgirection. The weak bond result shows that one cannot in-
est (s=1¢) segments. crease the toughness of a fiber network by inhibiting fiber
failure with weak matrix/contacts.

Large fluctuations show up in the breaking potential
when the conductivity between layers is smalb€0.1).
Physically, this means that the system is brought closer to the
percolation threshold due to increasing isolation of layers.

Next we test the consequences of the ratio of the breakFhe scaling of the breaking potential is approximately
ing limits of bonds and fiber segments,=i%/i*¥, and the V,~r,%. When bonds are weaker than fiber segments
ratio of the intra-layer conductivity to that inside the layers,(r,;<1), Ny increases and bot4,, andl, decrease with de-

=

Oeff

IGs/Gb 10 100

IV. THE EFFECT OF BREAKING LIMITS AND THE
EFFECTIVENESS OF INTER-LAYER CURRENT
TRANSFER

TABLE I. Scaling ofVy, 1,,, NiY andN§ as functions of ; andr,. System size is 4%4.5 fiber lengthsT;=1 andN;=3N; .

Vp Iy NY/NZ

ro\ryg 0.1 0.5 1.0 2.0 0.1 0.5 1.0 2.0 0.1 0.5 1.0 2.0

0.1 10.4-1.2 48.6:6.1 80 =28 75 *19 1506 6.6:0.8 9.4+15 9.2:1.1 0/4+x6 2*+2/32t5 26x4/7x4 34+4/0
0.5 4404 22.0-20 30.4t 1.0 310 19 1502 7.6:08 11.0:01.6 10.6-1.9 0/42t7 2*+2/33+4 19+4/6+2 31+6/0
1.0 35:04 177419 234 02 244 15 1.6:-0.2 8.1+1.0 10.8-1.3 10.9-14 0/39-2 1+1/33+4 24+1/4+2 28+6/0
2.0 3.000.3 15217 19.6- 1.7 205 23 1.6:0.2 8.2:0.8 11.3-0.3 11.5-1.2 0/4k*4 2*x1/35t6 19+4/5+x3 28+7/0
4.0 2.6:0.2 13.2£1.0 17.0-0 0.7 18.0- 2.3 1.6£0.2 8.2£t1.0 11.3:1.0 11716 0/46-9 2*x1/37£9 21t6/4+3 25t5/0
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FIG. 5. Effective conductivity of the lattice obtained from numerical data. FIG. 6. Breaking potential as a function of fiber flexibility for
T¢=1, system size7l¢X7l;. (A) Ny=6.2N¢., (X) Ny=5N;., (O) N¢=1-5XN¢. for a system of size 11x11l; in the xy plane. (A)
Ni=3.7N;., (+) N=25N¢., (¢) Ny=1.280;.. In comparing the  N{=6.20N., (X) Ng=5N;, (O) Ny=3.7N¢ ¢, (+) Ng=2.8N;, ()
simulation results to Fig. 4, please note that here conductivity grows withN¢=1.28N¢ ..

N; . In Fig. 4 the maximum conductivity is always equal to unity.

conductivity resembles results obtained for 2D random fiber
networks when fiber—to—fiber bonds are includéthe dif-
ference to the EMA calculation of Sec. Il may be partly due
to the fact that the coverage or effective thickness is still
rather limited(six times the percolation densjty

The breaking potentiaVy, is roughly constant as a func-
of N¢, except for very rigid fibersT;=0.25) at densi-

creasingr,. The scaling of the fracture quantities as a func-
tion of ry is approximatelyN,~e'*7 and bothV, and
l,~In(r,). Except for the case 0¥, r, has no effect on
fracture characteristics whep<<1. The total number of bro-
ken connections saturates to a constant valug=ait,” . Both
the breaking potential and the breaking current are Iinearl){ion

[ i <1. = : . L
decreasing functions afy whenr;=<1. The values; =100 .o c0'o the percolation poiffig. 6. On approach to

andr=5 used by us in the subsequent simulations haV(%he ercolation point, an increase in the breaking potential
been chosen to be in the “safe” region, where WeII—definedSim”F;1r o that sgen i,n e diluted lattice mod@%spob-
pure fiber-breaking behavior is seen. €9,

: . served. This effect is made stronger by a decrease in the
Interestingly, bottV, andl,, change linearly as a func- - q. o Gensity due to loss of connectivity in the system
tion of r; whenr,;<1. This suggests that in this regime ty y y

(breaking takes place mostly in bond&VA -type argumen- resulting from the increasing r|g|d|ty of th_e fibers &g is
. . - decreased. In any case, our model differs in that respect from
tation may be used to obtain predictions for fracture load. Itvvhat one would expect for a disordered brittle fuse model
is understandable that the effective medium argument works . XP
with a 2D/3D transition, a¥, does not seem to relate i .

better in the case of bond fracture as the changes of th8n the experimental side, this compares with the finding that

current in a fiber after a bond failure are much more gradual,[.he elastic breaking strair(defined with the relation

€.=0./E) is of the order of 1% irrespective of the basis
V. BRITTLE FAILURE OF FIBER NETWORKS weight of paper or bondedness of the netwbrk.

Next we embark on a study of the failure characteristics  Based on the three system sizes simulated<(2@x N,
of planar fiber networks in the regime where fiber failure is50X 50X N¢, and 80 80X N;¢), the finite size scaling of the
the dominating process. We have chosen to study this cadweaking potential follows approximately the 2D extreme
first because it is numerically much easier than the “bondscaling®® V,~L//In L for all the values ofT; with constant
breakage” one, and second because it is directly comparabN;. Since we only have three system sizes available, it is
to earlier random-fuse network simulations of the failure ofimpossible to obtain the accurate form of the finite size scal-
brittle materials and composité%®1© ing. The rupture currentt, displays saturation as a function

The conductivity stays approximately constant forof T; as expected, and is a linear functionMf, scaling as
T;=2-4 andN;=5N; . when the system dimensions are 1,~L%8 %9 for constantN; for all values of T;. Alterna-
varied. WhenT;=<1, the conductivity is reduced slightly tively, I, can be fitted quite well with an extreme scaling-
with increasing system size. Close to the connectivity percotype form® The small number of system sizes simulated
lation point,Ns~N¢ ., the conductivity decreases more rap- prevents us from differentiating between the two cases.
idly, indicative of an increasing correlation length in the sys-  The distribution of currents in the connections saturates
tem. Figure 5 shows the scaling of.s; as a function of if the fibers become very flexible. A less obvious result is the
os/op. The results show that the effective medium theorysaturation of the high current end of the distribution also as a
gives quite a good prediction farqsi(os/0,) when a is  function of N¢, which can be perceived in Fig. 7. The simple
large. The decay oé ;¢ with decreasingrs/oy, is slightly  conclusion is that this is another sign of the effective “2D”
slower in the true simulation data than in the EMA results.nature of the networks. This is because the distribution of
Moreover, at the limit of well-conducting bonds.¢; is  segment stresses in a two-dimensional random fiber system
larger in the former. The shape of the numerically obtainedsaturates in the same w&y.Please note that the number of
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FIG. 7. Current distributions for several values Mf. System size is

4.89¢x4.9; in the xy plane, T;=0.25(a) and 4.0(b). (A) N¢=6.28N¢ .,

FIG. 8. Total current in all of the three lattice directiof@ and maximum
(X) N¢=5N; ¢, () Ng=3.7N¢ o, (+) Ng=2.N¢ ¢, (O) Ng=1.25N¢ .

current(b) as a function of the height from the substrate surface. Single

simulation result. System size is 4%4.9¢ andT;=1. (—) N;=5N; ,
(=) Ny=3.8N;, (o) Np=2.5N; (.

small currents does not seem to saturate equally well. Except

for the small values of the currents, the curves can be quite
well collapsed on top of each other by equating the integralseals that there is a small increase in the number of currents
of the individual distributions. at the highest end of the current distribution. Large values of
We also analyzed the distributions of currents depending are indicative of current flowing through narrow bridges
on the location of the bond/fiber in the network in the out-between larger-than-average pores in the system.
of-plane direction. This was done by plotting both the local =~ The best guess as to why the high current end of the
average current and the largest current as functions of the current distribution saturates would be that the defects or
coordinate of the layefFig. 8. The total current was com- inhomogeneities that give rise to it are “in-plane” and thus
puted by summing the absolute values of currents in all théhe addition of more layers of fibers plays no role. If an
three principal directions in the lattice for each lattice pointincreasing network thickness would give rise to truly 3D
and the maximum current was obtained by choosing the larg‘defect geometries” this would be visible as changes in the
est of the absolute values of the three currents in the princidistribution as well. Of course, judging such differences
pal directions. After this was done, the currents with thefrom our data may be difficult. The slope of the current dis-
samez coordinate were summed in both cases. The figuregribution (Fig. 7) does not depend ofi;. This may seem
indicate that the current distribution is slightly nonuniform, surprising at first sight, but the explanation is quite natural.
but much less so for the maximum currents. The anisotropyWhenT; is increasedi.e., fibers are made more flexibl¢he
comes from the way the networks are formed: as a threeaverage segment length is reduced. The current going
dimensional structure is being grown, the network surface ishrough the lattice is redistributed among the shorter seg-
rough!! which makes the actual fiber density in the top lay-ments. Due to the fact that the tail of the current distribution
ers smaller. This naturally results in a “smaller” value for n(i) is exponential, the form of the distribution is not af-
total current in there. In view of these results, the constancyected, although the tail is moved upwards. This can be seen
of the current distributions seems to stem from most of theén Fig. 7 both from the absolute scale and the relative height
current in all layers being quite small, whereby only the lowof the zero-current peak.
end of the current distribution is affected by the increase in  On the other hand, the system size has an effect on the
the number of layers. A close inspection of the figures reslope of the tail. If the tail of the distribution is parametrized
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asn(i)~e P for L=3, 7 and 1XI; the decay parameters what has been seen in mechanical Finite Element Method
are =166, 200, and 400, respectively. This steepening okimulations of 2D random fiber networks. These observa-
the distribution can be attributed to boundary effects. Theions reinforce the main point of our paper.

high-end tail of the current distribution is always exponen-  The expected fracture characteristics of brittle, planar
tially independent ofT;, which indicates that the effective fiber networks have here been shown to comply with generic
medium mode[Eq. (5)] presented earlier does not work for 2D models for the failure of disordered media. This includes
low values ofT; . Like the other breaking quantities, the total similar size-scaling behavior fdr, andl,, and trivial-type
number of broken connections saturates with increa$ing damage scaling as the fraction of fibers breaking versus sys-
Ny, is approximately a linear function ®&; with a finite size  tem size. It would thus be interesting to compare by simulat-
scalingN,~ L% 11 for all T; for constaniN; . For compari- ing the effect ofiZ/iX¥ in the region where it is smaller than
son, the random breaking limit model in 2D givieg~L + unity, i.e., in the “bond breaking” territory. From the ex-
const for weak disorder antl,~L+L'® for strong one. perimental point of view the result that the failure voltage
This result is an indication of the brittle nature of fracture in (“stress”) does not depend on network thickness is a verifi-
the system and shows that in our simulations, networks faifible prediction and agrees with what is known about the
by the formation of a roughly linear crack from a seed defectfailure of fiber networks in the form of paper.
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with the number of fibers in the system. This is similar to coelasticity of the fibers does not play any role.
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