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We compare the roughness of minimal energy (ME) surfaces and scalar “quasistatic” fracture (SQF)
surfaces. Two-dimensional ME and SQF surfaces havethe same roughness scaling,w , Lz (L is
the system size) withz  2

3 . The 3d ME and SQF results at strong disorder are consistent with
the random-bond Ising exponentz sd $ 3d ø 0.21s5 2 dd (d is the bulk dimension). However, 3d
SQF surfaces arerougher than ME surfaces due to a larger prefactor. ME surfaces undergo a
“weakly rough” to “algebraically rough” transition in 3d, suggesting a similar behavior in fracture.
[S0031-9007(97)04993-4]

PACS numbers: 62.20.Mk, 03.40.Dz, 46.30.Nz, 81.40.Np

Fracture [1] continues to attract the attention of the ma-
terials theory community, with the full spectrum of theo-
retical tools currently being applied to its analysis [1–9].
Cracks are usually self-affine and their roughness can be
characterized by a roughness exponentsz d, which may take
on a few distinct values [7–9] (here, we calculate the “out-
of-plane roughness” of fracture surfaces). However, a de-
bate continues about whether or not fracture surfaces are
ever generated by “quasistatic” processes [2,7,8,10]. A
quasistatic fracture process is one in which the stress field
is always close to equilibrium. For this to be true, damage
must evolve much more slowly than the time required for
the stress field to equilibrate. Slow crack growth and high
cycle fatigue are expected to be in this limit. As well as
their fundamental interest, the latter processes are of enor-
mous industrial importance. Bouchaudet al. [8] argue
that at short length scales (as probed by, e.g., scanning tun-
neling microscopy) quasistatic processes dominate, while
at longer length scales dynamical processes are of primary
importance. Here, we present extensive numerical results
on the topology of quasistatic fracture surfaces in random
fuse networks. We also compare these fracture surfaces
with minimal energy surfaces in thesame networks. Us-
ing fast optimization methods, we are able to simulate the
latter interfaces for large system sizes.

Surprisingly [11], the roughness exponent of minimal
energy (ME) surfaces and scalar quasistatic brittle frac-
ture (SQF) surfaces have been shown to be close in two
dimensions. This is surprising because a minimal energy
surface is the surface of minimum energy in, for example,
an Ising model with random bonds (see below), which
seems to have little to do with fracture. Nevertheless,
there is some experimental evidence that this holds in two
dimensions [12]. We present precise numerical confirma-
tion of the equivalence of ME and SQF roughness ex-
ponents in two dimensions. We analyze networks with
either continuous or discrete disorder and find the same

size dependence in all cases, in contrast to previous sug-
gestions that discrete disorder is special [13].

In three dimensions, our calculations are for ME and
SQF surfaces of the cubic lattice in the {100} direction.
We choose the low energy, {100} direction as it is more
typical of the orientation of fracture surfaces. It has been
recently claimed that vector quasistatic fracture (VQF)
surfaces are logarithmically rough atweak disorder[10].
In the same paper, it was stated that SQF are algebraically
rough in the same disorder regime. Since this result
is at odds with the experimental data [8], which are
naturally for the vector case, it was further suggested that
quasistatic fracture is not relevant in real experiments.
The latter statement is difficult to believe, for example,
in the case of high cycle fatigue, in which the time to
failure is days to years. One possible reason for this
dichotomy is that the calculations of Ref. [10] may apply
at weak disorder and that there may be a transition to
an algebraically rough phase as disorder increases. To
illustrate that this may occur even in the scalar case, we
present extensive data confirming our claim [14] thatat
weak disorderME surfaces in the {100} orientation are
quite flat (probably logarithmically rough), while at strong
disorder they become algebraically rough.

The simplest realization of a ME surface is a domain
wall in a random-bond Ising model with Hamiltonian
H  2

P
JijSiSj, where Si  61 and Jij are random

but non-negative. A domain wall is imposed by fixing
one face of a square or cubic lattice to be positive and
the opposite face to be negative. It was only recently
realized that the problem of finding the minimal energy
surface (domain wall) is equivalent to an important and
well-known problem in graph theory (the min-cut/max-
flow problem) [14,15]. In the flow problem, each bond
of the lattice has a “flow capacity”scij  2Jijd and, once
the flow capacity of a bond has been reached, the excess
flow must be shunted along alternative paths (bonds). The
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domain wall energy is equal to the maximum flow that
can be pushed through the network without exceeding
any of the capacities. Fast, exact algorithms are available
for the flow problem and we have developed and applied
these algorithms previously [14]. Here, we extend these
calculations, and compare them with results for SQF
surfaces.

The fuse network is an electrical network (e.g., a simple
cubic lattice) in which each bond is a resistor which
fails when more than a threshold currentiij amp passes
through it. We use the standardhottest bondalgorithm for
calculating fracture surfaces in the fuse network. These
electrical networks usually capture many of the essential
features of failure problems and have become a paradigm
in the area [2].

To quantitatively compare fracture and minimal energy
surfaces, we set the critical current for the failure of
a fuse siijd to the flow capacity used in the minimal
surface calculation (i.e.,cij  iij). The simple physical
difference between the two cases is that in the fuse
network a bond carries no current onceiij is exceeded
(it breaks), while in the minimal surface case, a bond
continues to carry its threshold capacityiij  cij even
after its threshold is exceeded (it “yields” but does not
break). The latter case corresponds to a “perfectly plastic”
response. In all cases, we have done calculations for two
types of disorder: random dilution, with probabilityp of a
bond being present with2Jij  cij  iij  1; and, for
a uniform distribution, with2Jij  cij  iij drawn from
a uniform distribution with mean 1 and extending from
1 2 R to 1 1 R.

Results for two dimensions are presented in Figs. 1
and 2. In Figs. 1(a) dilution disorder) and 2(a) (continu-
ous disorder), we present data for the size dependence of
the interface roughness or “width”w , cspdLz , w2 
khsxd 2 khsxdll2 [hsxd describes the interface position for
a given disorder configuration]. The data in these figures
demonstrate that the roughness exponent of minimal en-
ergy surfaces and scalar fracture surfaces are asymptoti-
cally the same in two dimensions. Thus, as suggested
previously [11], the roughness exponent takes the value
z  2

3 [dotted line in Figs. 1(a) and 2(a)], which is exact
for ME’s [16]. In Fig. 1(b), we show that ME and SQF
surfaces are rough for arbitrarily weak dilution disorder
in two dimensions. We also calculated the roughness of
cracks grown from an initial notch and find results con-
sistent with Figs. 1(a) and 2(a). For a given realization,
ME’s and SQF surfaces may still be quite different and
have different roughness [see Fig. 2(b)]. We found that
for dilution disorder ME and SQF paths are more similar,
but for a continuous distribution they are usually different,
with the SQF surfaces being rougher. [This can be seen
in Fig. 2(b).] This is due to the distributed “damage”
generated by the SQF process, with this process being
more important for continuous disorder than for the dilu-
tion case.

FIG. 1. The roughnessw of scalar quasistatic fracture (SQF)
surfaces and minimal energy (ME) surfaces in the {10}
orientation of square lattices withdilution (discrete) disorder.
(a) Log-log plot of w as a function of system sizeL at
p  0.80: SQF (open circles); ME (filled circles). The dotted
line has slopez  2

3 . Boundary conditions were periodic in the
perpendicular direction. For SQF, the number of configurations
in the averages,N, varied from N  10 for L  500 to
N  256 for L  10, while for the ME, we usedN  100 for
L  1000 up to N  5000 for L  50. (b) The dependence
of w on disorder for SQF (L  100, N  30—open circles)
and ME (L  100, N  5000—filled circles).

Results of simulations in three dimensions are pre-
sented in Fig. 3. Figure 3(a) presents data for the rough-
ness of SQF and ME surfaces in403 {100} cubic lattices
with dilution disorder. We use periodic boundary condi-
tions in one direction, and free ones in the other. Two
differences between these data and the behavior in two
dimensions [Fig. 1(b)] are evident: First, SQF surfaces
are rougher than ME surfaces and, second, all surfaces
are quiteflat for weak disorder. In previous work [14],
we argued that for ME surfaces, there is atransition be-
tween a weak disorder phase (with perhaps logarithmic
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FIG. 2. The roughnessw of scalar quasistatic fracture (SQF)
surfaces and minimal energy (ME) surfaces in the {10}
orientation square lattices for auniform distribution of disorder.
(a) Log-log plot ofw versusL for R  1: SQF (open circles);
ME (filled circles). The dotted line has slopez  2

3 . For SQF,
the number of configurations in the averages,N, varied from
N  50 for L  100 to N  400 for L  5, while for the
ME case, we usedN  100 for L  1000 up to N  5000 for
L  10. (b) (SQF) (diamonds) and ME (plus signs) surfaces in
one configuration of a two-dimensional {10},L  100 random
network withR  1.

roughness) forp . pp , 0.89 and an algebraically rough
phasep , pp. We have done extensive tests of this hy-
pothesis with a parallel version of our optimization algo-
rithm [17] and typical results are presented in the inset of
Fig. 3(a). In that figure, we present the roughness as a
function of sample size (up to 4003) at p  0.90 . pp.
At p  0.90, we expect a log-log plot of the roughness to
level off indicating an absence of algebraic scaling of the
roughness. This is clearly seen in the inset of Fig. 3(a)
and confirms our hypothesis of a transition atpp , 0.90.

FIG. 3. The roughnessw of SQF and ME surfaces in three
dimensions. (a) w as a function of p for SQF (L 
40, N  30—open circles) and ME (L  40, N  5000—
solid circles) surfaces. The inset shows a finite-size-scaling plot
of the roughness atp  0.90, which is in the “weak disorder”
regime. (b) Log-log plot ofw in the “strong disorder” regime.
Open symbols are for SQF surfaces and filled symbols are
for ME surfaces. The data are forR  1 (squares),R  1

2
(circles),p  0.7 (triangles), andp  0.50 (diamonds). As in
Figs. 1 and 2, the ME surfaces are averaged over thousands of
configurations, while the largest size SQF surfaces are averages
over around 50 configurations.

A finite-size-scaling plot of the roughness of SQF
and ME surfaces inthe strong disorder regimeis pre-
sented in Fig. 3( b). These data again show that, in
three dimensions, SQF surfaces arerougherthan ME sur-
faces. The ME data (solid symbols) reach the asymp-
totic exponentz3d  0.41 6 0.02 [14,15,18] with the
sample sizes that are available. Note, however, that
at smaller sizes, theR  1 ME data have a consider-
ably larger slope in this log-log plot. The fracture data
at R  1

2 show a very simple scaling with exponent
0.40 6 0.05, which is consistent with the ME value.
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We find that for intermediate disorder (e.g.,p  0.80)
this behavior is typical of SQF surfaces. However, at
stronger disorder the SQF data have strong size effects
[seep  0.7—open triangles, andR  1—open squares
in Fig. 3(b)]. Although the slope in these data is ini-
tially large, it continuously decreases. We have ana-
lyzed these data in several ways. It is evident that unless
the data change their trendz , 0.50. A more detailed
analysis using finite-size scaling forms, and an analy-
sis of a running exponent yields estimates close to 0.40.
Though much larger sample sizes are necessary to reach
the asymptotic regime for theR  1 andp  0.70 cases,
the data in Fig. 3(b) are consistent with the simple con-
clusion that SQF and ME surfaces have the random-bond
Ising exponents, and that there are stronger finite-size ef-
fects at stronger disorder.

Now, we discuss some reasons for the trends seen in
the data of Figs. 1–3. Because of local current concentra-
tions, one might expect cracks to become “flatter” as they
become larger. However, a random void displaced a small
vertical amount from a horizontal crack always makes the
crack deviate, no matter how long the crack (provided the
neck between the void and the crack is small enough or,
on lattices, provided the void is big enough). Once the
crack has wandered off the horizontal plane, it has a rela-
tively weak memory for the horizontal plane (the stress or
current field has a rather small gradient on the length scale
of the roughness of the crack). This allows the crack to
explore the energetically most favorable bonds to break,
in a similar manner to a ME surface. In fact, there are
mechanisms which can make a SQF surfacerougherthan
a ME one. In particular, although the stress field has a
weak averagegradient in the process zone, its absolute
value is high. This produces bond breaking in the process
zoneahead of the crack tip. Since the crack propagates
through this zone, the disorder it sees is larger than that
of the pristine disordered system. This effect ofdamage
generationis similar to what is observed in measurements
of acoustic emission in slow fracture of 2D media [19].
Because of this effect, SQF surfaces can be rougher than
ME surfaces with the same initial disorder. Note that al-
though we might expect this mechanism to decrease with
increasing sample size due to the size effects in damage,
we are interested in the damage near the crack tip and the
behavior of that quantity with sample size is unknown.

In summary, we find that SQF and ME surfaces at
strong disorder have out-of-plane roughness exponents
z2d 

2
3 and z3d  0.41 6 0.02. However, at smaller

sample sizes, our SQF surfaces have an effective expo-
nent which can be considerably larger than 0.41. We
confirmed that, for ME surfaces in 3d, there is a weakly
rough to algebraically rough transition atp , 0.89. This
implies that cracks can be quite flat along the low energy
(cusp) directions of a crystal lattice.
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