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We compare the roughness of minimal energy (ME) surfaces and scalar “quasistatic” fracture (SQF)
surfaces. Two-dimensional ME and SQF surfaces hheesame roughness scaling, ~ L¢ (L is
the system size) withi = % The 3 ME and SQF results at strong disorder are consistent with
the random-bond Ising exponerifd = 3) = 0.21(5 — d) (d is the bulk dimension). However,d3
SQF surfaces areougher than ME surfaces due to a larger prefactor. ME surfaces undergo a
“weakly rough” to “algebraically rough” transition ind3 suggesting a similar behavior in fracture.

[S0031-9007(97)04993-4]

PACS numbers: 62.20.Mk, 03.40.Dz, 46.30.Nz, 81.40.Np

Fracture [1] continues to attract the attention of the masize dependence in all cases, in contrast to previous sug-
terials theory community, with the full spectrum of theo- gestions that discrete disorder is special [13].
retical tools currently being applied to its analysis [1-9]. In three dimensions, our calculations are for ME and
Cracks are usually self-affine and their roughness can b8QF surfaces of the cubic lattice in the {100} direction.
characterized by a roughness exporiéintwhich may take We choose the low energy, {100} direction as it is more
on a few distinct values [7—-9] (here, we calculate the “outtypical of the orientation of fracture surfaces. It has been
of-plane roughness” of fracture surfaces). However, a derecently claimed that vector quasistatic fracture (VQF)
bate continues about whether or not fracture surfaces amrfaces are logarithmically rough weak disordef10].
ever generated by “quasistatic” processes [2,7,8,10]. An the same paper, it was stated that SQF are algebraically
guasistatic fracture process is one in which the stress fielugh in the same disorder regime. Since this result
is always close to equilibrium. For this to be true, damages at odds with the experimental data [8], which are
must evolve much more slowly than the time required fomaturally for the vector case, it was further suggested that
the stress field to equilibrate. Slow crack growth and higlquasistatic fracture is not relevant in real experiments.
cycle fatigue are expected to be in this limit. As well asThe latter statement is difficult to believe, for example,
their fundamental interest, the latter processes are of enoin the case of high cycle fatigue, in which the time to
mous industrial importance. Bouchawd al. [8] argue failure is days to years. One possible reason for this
that at short length scales (as probed by, e.g., scanning tudichotomy is that the calculations of Ref. [10] may apply
neling microscopy) quasistatic processes dominate, whilat weak disorder and that there may be a transition to
at longer length scales dynamical processes are of primagn algebraically rough phase as disorder increases. To
importance. Here, we present extensive numerical resulifiustrate that this may occur even in the scalar case, we
on the topology of quasistatic fracture surfaces in randonpresent extensive data confirming our claim [14] that
fuse networks. We also compare these fracture surfacegeak disorderME surfaces in the {100} orientation are
with minimal energy surfaces in tteame networks Us-  quite flat (probably logarithmically rough), while at strong
ing fast optimization methods, we are able to simulate thelisorder they become algebraically rough.

latter interfaces for large system sizes. The simplest realization of a ME surface is a domain
Surprisingly [11], the roughness exponent of minimalwall in a random-bond Ising model with Hamiltonian
energy (ME) surfaces and scalar quasistatic brittle fracH = —>_J;;S:S;, whereS; = =1 and J;; are random

ture (SQF) surfaces have been shown to be close in twibut non-negative. A domain wall is imposed by fixing
dimensions. This is surprising because a minimal energgne face of a square or cubic lattice to be positive and
surface is the surface of minimum energy in, for examplethe opposite face to be negative. It was only recently
an Ising model with random bonds (see below), whichrealized that the problem of finding the minimal energy
seems to have little to do with fracture. Neverthelesssurface (domain wall) is equivalent to an important and
there is some experimental evidence that this holds in twavell-known problem in graph theory (the min-cut/max-
dimensions [12]. We present precise numerical confirmaflow problem) [14,15]. In the flow problem, each bond
tion of the equivalence of ME and SQF roughness exof the lattice has a “flow capacity(c;; = 2J;;) and, once
ponents in two dimensions. We analyze networks withithe flow capacity of a bond has been reached, the excess
either continuous or discrete disorder and find the samBow must be shunted along alternative paths (bonds). The
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domain wall energy is equal to the maximum flow that
can be pushed through the network without exceeding
any of the capacities. Fast, exact algorithms are available
for the flow problem and we have developed and applied a)
these algorithms previously [14]. Here, we extend these -
calculations, and compare them with results for SQF 3 10¢
surfaces. g
The fuse network is an electrical network (e.g., a simple
cubic lattice) in which each bond is a resistor which
fails when more than a threshold curregt amp passes
through it. We use the standandttest bondlgorithm for
calculating fracture surfaces in the fuse network. These
electrical networks usually capture many of the essential
features of failure problems and have become a paradign )
in the area [2]. 0 100 1000
To quantitatively compare fracture and minimal energy System size (L)
surfaces, we set the critical current for the failure of
a fuse (i;;) to the flow capacity used in the minimal 5 : : : :
surface calculation (i.eg;; = i;;). The simple physical
difference between the two cases is that in the fuse b)
network a bond carries no current onge is exceeded 4r ]
(it breaks), while in the minimal surface case, a bond
continues to carry its threshold capacity = c¢;; even
after its threshold is exceeded (it “yields” but does not
break). The latter case corresponds to a “perfectly plastic
response. In all cases, we have done calculations for two
types of disorder: random dilution, with probabilipof a
bond being present witdJ;; = ¢;; = i;; = 1, and, for
a uniform distribution, with2J;; = ¢;; = i;; drawn from 1f 0%
a uniform distribution with mean 1 and extending from ®
Il —Rtol + R. b
Results for two dimensions are presented in Figs. 1 %7 0.0 085 090 095 100
and 2. In Figs. 1(a) dilution disorder) and 2(a) (continu- Bond fraction (p)

ous disorder), we present de‘l‘ta_ for”the size d?per;dence Bfc. 1. The roughness of scalar quasistatic fracture (SQF)
the interface roughness or “width¥ ~ c¢(p)L*, w” =  surfaces and minimal energy (ME) surfaces in the {10}
(h(x) — (h(x)))* [h(x) describes the interface position for orientation of square lattices wittilution (discrete) disorder.

a given disorder configuration]. The data in these figure$?) Log-log plot of w as a function of system sizé at
demonstrate that the roughness exponent of minimal erf2 = 0-80: SQF (open circles); ME (filled circles). The dotted

ne has slopg = % Boundary conditions were periodic in the
ergy surfaces and scalar fracture surfaces are asympto‘.'ln pendicular direction. For SQF, the number of configurations

caIIy_ the same in two dimensions. Thus, as suggesteﬂerthe averagesN, varied from N = 10 for L = 500 to
previously [11], the roughness exponent takes the valug = 256 for L = 10, while for the ME, we usedv = 100 for

[ = % [dotted line in Figs. 1(a) and 2(a)], which is exact L = 1000 up to N = 5000 for L = 50. (b) The dependence
for ME’s [16]. In Fig. 1(b), we show that ME and SQF ©f w on disorder for SQFX( = 100, N = 30—open circles)
surfaces are rough for arbitrarily weak dilution disorder®"d ME € = 100, N'= 5000—filled circles).

in two dimensions. We also calculated the roughness of

cracks grown from an initial notch and find results con- Results of simulations in three dimensions are pre-
sistent with Figs. 1(a) and 2(a). For a given realizationsented in Fig. 3. Figure 3(a) presents data for the rough-
ME’s and SQF surfaces may still be quite different andness of SQF and ME surfaces40’ {100} cubic lattices
have different roughness [see Fig. 2(b)]. We found thatvith dilution disorder. We use periodic boundary condi-
for dilution disorder ME and SQF paths are more similartions in one direction, and free ones in the other. Two
but for a continuous distribution they are usually different,differences between these data and the behavior in two
with the SQF surfaces being rougher. [This can be seedimensions [Fig. 1(b)] are evident: First, SQF surfaces
in Fig. 2(b).] This is due to the distributed “damage” are rougher than ME surfaces and, second, all surfaces
generated by the SQF process, with this process beingre quiteflat for weak disorder. In previous work [14],
more important for continuous disorder than for the dilu-we argued that for ME surfaces, there isransition be-

tion case. tween a weak disorder phase (with perhaps logarithmic
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o dimensions. (a) w as a function ofp for SQF € =
FIG. 2. The roughness of scalar quasistatic fracture (SQF) 40, y = 30—open circles) and MEI(= 40, N = 5000—

surfaces and minimal energy (ME) surfaces in the {10} solid circles) surfaces. The inset shows a finite-size-scaling plot
orientation square lattices forumiform distribution of disorder  of the roughness gt = 0.90, which is in the “weak disorder”

() Log-log plot ofw versusL for R = 1: SQF (gpen circles);  regime. (b) Log-log plot ofv in the “strong disorder” regime.

ME (filled circles). The dotted line has sloge= 3. For SQF,  Open symbols are for SQF surfaces and filled symbols are
the number of configurations in the averaghis,varied from  for ME surfaces. The data are f& = 1 (squares),R = %

N =50 for L =100 to N =400 for L =5, while for the  (circles),p = 0.7 (triangles), angp = 0.50 (diamonds). As’in

ME case, we usedy = 100 for L = 1000 up toN = 5000 for ~ Figs. 1 and 2, the ME surfaces are averaged over thousands of

L = 10. (b) (SQF) (diamonds) and ME (plus signs) surfaces inconfigurations, while the largest size SQF surfaces are averages
one configuration of a two-dimensional {104, = 100 random  over around 50 configurations.
network withR = 1.

A finite-size-scaling plot of the roughness of SQF
roughness) fop > p. ~ 0.89 and an algebraically rough and ME surfaces irthe strong disorder regimés pre-
phasep < p.. We have done extensive tests of this hy-sented in Fig. 3(b). These data again show that, in
pothesis with a parallel version of our optimization algo-three dimensions, SQF surfaces evegherthan ME sur-
rithm [17] and typical results are presented in the inset ofaces. The ME data (solid symbols) reach the asymp-
Fig. 3(a). In that figure, we present the roughness as fotic exponentl;; = 0.41 = 0.02 [14,15,18] with the
function of sample size (up to 48Dat p = 0.90 > p.. sample sizes that are available. Note, however, that
At p = 0.90, we expect a log-log plot of the roughness toat smaller sizes, th&® = 1 ME data have a consider-
level off indicating an absence of algebraic scaling of theably Iarqer slope in this log-log plot. The fracture data
roughness. This is clearly seen in the inset of Fig. 3(apt R = ; show a very simple scaling with exponent
and confirms our hypothesis of a transitiorpat<< 0.90. 0.40 = 0.05, which is consistent with the ME value.
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We find that for intermediate disorder (e.g.,= 0.80) We thank Edinburgh Parallel Computing Centre and
this behavior is typical of SQF surfaces. However, atCenter for Scientific Computing, Otaniemi, Finland, for
stronger disorder the SQF data have strong size effectomputing resources. This work is supported by the
[seep = 0.7—open triangles, anf = 1—open squares EU TRACS scheme, the Technology Development Cen-
in Fig. 3(b)]. Although the slope in these data is ini- tre of Finland, the Academy of Finland (MATRA pro-
tially large, it continuously decreases. We have anagram and MA separately), and by DOE grant DE-FGO02-
lyzed these data in several ways. It is evident that unlesER45418(PMD).

the data change their trenl < 0.50. A more detailed

analysis using finite-size scaling forms, and an analy-

sis of a running exponent yields estimates close to 0.40.
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