233 research outputs found
Tunable Oscillations in the Purkinje Neuron
In this paper, we study the dynamics of slow oscillations in Purkinje neurons
in vitro, and derive a strong association with a forced parametric oscillator
model. We demonstrate the precise rhythmicity of the oscillations in Purkinje
neurons, as well as a dynamic tunability of this oscillation using a
photo-switchable compound. We show that this slow oscillation can be induced in
every Purkinje neuron, having periods ranging between 10-25 seconds. Starting
from a Hodgkin-Huxley model, we also demonstrate that this oscillation can be
externally modulated, and that the neurons will return to their intrinsic
firing frequency after the forced oscillation is concluded. These results
signify an additional functional role of tunable oscillations within the
cerebellum, as well as a dynamic control of a time scale in the brain in the
range of seconds.Comment: 12 pages, 5 figure
Elephant (Field Based) in Natrinai Song
Human life requires language. Without language there is no human life. Civilization and one-to-one communication occurs through language. Man expresses thought through language. Poets have expressed their eloquence and depth of language through song. Because of this, it is necessary to carry out studies on the words they say nowadays. A word in Tamil has not only one meaning but also many meanings. There are no words without meaning. In the Sangam literature, among the eighteen above mentioned texts, the Naritana is placed as the first deposit. This article deals with the etymological analysis of the word 'Elephant' in the narrative songs
A Signal Processing Analysis of Purkinje Cells in vitro
Cerebellar Purkinje cells in vitro fire recurrent sequences of Sodium and Calcium spikes. Here, we analyze the Purkinje cell using harmonic analysis, and our experiments reveal that its output signal is comprised of three distinct frequency bands, which are combined using Amplitude and Frequency Modulation (AM/FM). We find that the three characteristic frequencies – Sodium, Calcium and Switching – occur in various combinations in all waveforms observed using whole-cell current clamp recordings. We found that the Calcium frequency can display a frequency doubling of its frequency mode, and the Switching frequency can act as a possible generator of pauses that are typically seen in Purkinje output recordings. Using a reversibly photo-switchable kainate receptor agonist, we demonstrate the external modulation of the Calcium and Switching frequencies. These experiments and Fourier analysis suggest that the Purkinje cell can be understood as a harmonic signal oscillator, enabling a higher level of interpretation of Purkinje signaling based on modern signal processing techniques
Primary fallopian tube carcinoma: review of MR imaging findings
Objectives To review the epidemiological and clinical features of primary fallopian tube carcinoma (PFTC), and to illustrate the spectrum of MRI findings, with pathological confirmation. Methods This article reviews the relevant literature on the epidemiological, clinical, and imaging features of primary fallopian tube carcinoma, with pathological confirmation, using illustrations from the authors' teaching files. Results Primary fallopian tube carcinoma came under focus over the last few years due to its possible role on the pathogenesis of high-grade serous epithelial ovarian and peritoneal cancers. Typical symptoms, together with the presence of some of the most characteristic MRI signs, such as a "sausage-shaped" pelvic mass, hydrosalpinx, and hydrometra, may signal the presence of primary fallopian cancer, and allow the radiologist to report it as a differential diagnosis. Conclusions Primary fallopian tube carcinoma has a constellation of clinical symptoms and magnetic resonance imaging features, which may be diagnostic. Although these findings are not present together in the majority of cases, radiologists who are aware of them may include the diagnosis of primary fallopian tube cancer in their report more frequently and with more confidence. Teaching Points PFTC may be more frequent than previously thought PFTC has specific clinical and MRI characteristics Knowledge of typical PFTC signs enables its inclusion in the differential diagnosis PFTC is currently staged under the 2013 FIGO system PFTC is staged collectively with ovarian and peritoneal neoplasmsinfo:eu-repo/remantics/publishedVersio
Using lithium as a neuroprotective agent in patients with cancer
Neurocognitive impairment is being increasingly recognized as an important issue in patients with cancer who develop cognitive difficulties either as part of direct or indirect involvement of the nervous system or as a consequence of either chemotherapy-related or radiotherapy-related complications. Brain radiotherapy in particular can lead to significant cognitive defects. Neurocognitive decline adversely affects quality of life, meaningful employment, and even simple daily activities. Neuroprotection may be a viable and realistic goal in preventing neurocognitive sequelae in these patients, especially in the setting of cranial irradiation. Lithium is an agent that has been in use for psychiatric disorders for decades, but recently there has been emerging evidence that it can have a neuroprotective effect.This review discusses neurocognitive impairment in patients with cancer and the potential for investigating the use of lithium as a neuroprotectant in such patients.<br /
Using lithium as a neuroprotective agent in patients with cancer
Neurocognitive impairment is being increasingly recognized as an important issue in patients with cancer who develop cognitive difficulties either as part of direct or indirect involvement of the nervous system or as a consequence of either chemotherapy-related or radiotherapy-related complications. Brain radiotherapy in particular can lead to significant cognitive defects. Neurocognitive decline adversely affects quality of life, meaningful employment, and even simple daily activities. Neuroprotection may be a viable and realistic goal in preventing neurocognitive sequelae in these patients, especially in the setting of cranial irradiation. Lithium is an agent that has been in use for psychiatric disorders for decades, but recently there has been emerging evidence that it can have a neuroprotective effect.This review discusses neurocognitive impairment in patients with cancer and the potential for investigating the use of lithium as a neuroprotectant in such patients.<br /
Connecting microscopic structures, meso-scale assemblies, and macroscopic Architectures in 3D-printed hierarchical porous covalent organic framework foams
The induction of macro and mesopores into two-dimensional porous covalent organic frameworks (COFs) could enhance the exposure of the intrinsic micropores toward the pollutant environment, thereby, improving the performance. However, the challenge is to build a continuous hierarchically porous macro-architecture of crystalline organic materials in the bulk scale. In this regard, we have strategized a novel synthetic method to create hierarchically porous COF foams consisting of ordered micropores (2–2.2 nm) and disordered meso and macropores (50 nm to 200 μm) as well as ordered macropores (1.5 mm to 2 cm). Herein, graphene oxide was used for creating disordered macro and mesopores in COF-GO foams. Considering the rheological features of the precursor hydrogel, we could integrate crystalline and porous COF-GO foams into self-supported three-dimensional (3D)-printed objects with the desired shapes and sizes. Therefore, we have engineered the 3D macro-architecture of COF-GO foams into complex geometries keeping their structural order and continuous porosity intact over a range of more than a million (10–9 m to 10–3 m). The interconnected 3D openings in these COF-GO foams further enhance the rapid and efficient uptake of organic and inorganic pollutants from water (>95% removal within 30 s). The abundant distribution of interconnected macroporous volume (55%) throughout the COF-GO foam matrix enhances the flow of water (1.13 × 10–3 m·s–1) which results in efficient mass transport and adsorption
GCT-03. MonoGerm, a novel proof-of-principle Bayesian phase II trial design of carboplatin or vinblastine monotherapy induction prior to radiotherapy for intracranial germinoma [Abstract]
BACKGROUND
Current European standard-of-care for localised intracranial germinoma is multi-agent chemotherapy (carboPEI: carboplatin/etoposide/ifosfamide) followed by definitive radiotherapy, with excellent survival. MonoGerm is a de-escalation, non-inferiority trial aiming to reduce toxicity. Twelve-week carboplatin (PMID:8039122) AUC10 or vinblastine (PMIDs:32642701/34520101) induction will be evaluated to test if as effective as carboPEI from SIOP-CNS-GCT-II. A novel trial design was required to answer this question pragmatically/safely.
METHODS
Clinical trials in rare diseases recruit slowly, allowing continuous monitoring of efficacy outcomes. Efficacy-transition-pathways (ETP) are innovative visual tools to aid determination of trial design parameters, and an extension of the dose-transition-pathways concept introduced for dose-finding trials (PMID:28733440).
RESULTS
MonoGerm includes two monotherapies, with each single arm recruiting six cohorts of three patients, with interim assessment after each recruited cohort and final analysis at 18 patients (total n=36). Insufficient tumour volume response (<30%) at 6-week safety MRI results in 12-weeks carboPEI. Primary outcome is radiological complete response (CR) by 12-weeks of induction monotherapy. A beta-binomial conjugate analysis will generate posterior probability distributions, combining observed trial data as realisations from a binomial distribution with a minimally informative Beta (1,1) prior. Decision criteria to allow early stopping at interim analyses and go/no-go decisions at final analysis are based on probabilities from these posterior distributions. ETP visually maps out parameters used to assert decisions after each interim assessment as a pyramid decision tree. For each recruited cohort and every CR outcome, estimates of the true CR rate and probabilities with associated decisions are mapped out. ETP allows clear communication between statisticians, clinicians, and patient-public-involvement (PPI) teams, facilitating informed decisions in an efficient/realistic trial design.
CONCLUSION
MonoGerm, a novel Bayesian de-escalation trial, funded by Little Princess Trust (https://www.littleprincesses.org.uk/), uses ETP and continuous monitoring with built-in stopping rules to ensure patient safety in this treatment de-escalation trial
Isolation and characterization of a novel 2-sec-butylphenol-degrading bacterium Pseudomonas sp. strain MS-1
A novel bacterium capable of utilizing 2-sec-butylphenol as the sole carbon and energy source, Pseudomonas sp. strain MS-1, was isolated from freshwater sediment. Within 30 h, strain MS-1 completely degraded 1.5 mM 2-sec-butylphenol in basal salt medium, with concomitant cell growth. A pathway for the metabolism of 2-sec-butylphenol by strain MS-1 was proposed on the basis of the identification of 3 internal metabolites—3-sec-butylcatechol, 2-hydroxy-6-oxo-7-methylnona-2,4-dienoic acid, and 2-methylbutyric acid—by gas chromatography-mass spectrometry analysis. Strain MS-1 degraded 2-sec-butylphenol through 3-sec-butylcatechol along a meta-cleavage pathway. Degradation experiments with various alkylphenols showed that the degradability of alkylphenols by strain MS-1 depended strongly on the position (ortho ≫ meta = para) of the alkyl substitute, and that strain MS-1 could degrade 2-alkylphenols with various sized and branched alkyl chain (o-cresol, 2-ethylphenol, 2-n-propylphenol, 2-isopropylphenol, 2-sec-butylphenol, and 2-tert-butylphenol), as well as a dialkylphenol (namely, 6-tert-butyl-m-cresol)
High-Performance Computing for SKA Transient Search: Use of FPGA based Accelerators -- a brief review
This paper presents the High-Performance computing efforts with FPGA for the
accelerated pulsar/transient search for the SKA. Case studies are presented
from within SKA and pathfinder telescopes highlighting future opportunities. It
reviews the scenario that has shifted from offline processing of the radio
telescope data to digitizing several hundreds/thousands of antenna outputs over
huge bandwidths, forming several 100s of beams, and processing the data in the
SKA real-time pulsar search pipelines. A brief account of the different
architectures of the accelerators, primarily the new generation Field
Programmable Gate Array-based accelerators, showing their critical roles to
achieve high-performance computing and in handling the enormous data volume
problems of the SKA is presented here. It also presents the power-performance
efficiency of this emerging technology and presents potential future scenarios.Comment: Accepted for JoAA, SKA Special issue on SKA (2022
- …
