256 research outputs found

    Short-term efficacy of physical interventions in osteoarthritic knee pain. A systematic review and meta-analysis of randomised placebo-controlled trials.

    Get PDF
    BACKGROUND: Treatment efficacy of physical agents in osteoarthritis of the knee (OAK) pain has been largely unknown, and this systematic review was aimed at assessing their short-term efficacies for pain relief. METHODS: Systematic review with meta-analysis of efficacy within 1-4 weeks and at follow up at 1-12 weeks after the end of treatment. RESULTS: 36 randomised placebo-controlled trials (RCTs) were identified with 2434 patients where 1391 patients received active treatment. 33 trials satisfied three or more out of five methodological criteria (Jadad scale). The patient sample had a mean age of 65.1 years and mean baseline pain of 62.9 mm on a 100 mm visual analogue scale (VAS). Within 4 weeks of the commencement of treatment manual acupuncture, static magnets and ultrasound therapies did not offer statistically significant short-term pain relief over placebo. Pulsed electromagnetic fields offered a small reduction in pain of 6.9 mm [95% CI: 2.2 to 11.6] (n = 487). Transcutaneous electrical nerve stimulation (TENS, including interferential currents), electro-acupuncture (EA) and low level laser therapy (LLLT) offered clinically relevant pain relieving effects of 18.8 mm [95% CI: 9.6 to 28.1] (n = 414), 21.9 mm [95% CI: 17.3 to 26.5] (n = 73) and 17.7 mm [95% CI: 8.1 to 27.3] (n = 343) on VAS respectively versus placebo control. In a subgroup analysis of trials with assumed optimal doses, short-term efficacy increased to 22.2 mm [95% CI: 18.1 to 26.3] for TENS, and 24.2 mm [95% CI: 17.3 to 31.3] for LLLT on VAS. Follow-up data up to 12 weeks were sparse, but positive effects seemed to persist for at least 4 weeks after the course of LLLT, EA and TENS treatment was stopped. CONCLUSION: TENS, EA and LLLT administered with optimal doses in an intensive 2-4 week treatment regimen, seem to offer clinically relevant short-term pain relief for OAK

    Optical coherence tomography-based contact indentation for diaphragm mechanics in a mouse model of transforming growth factor alpha induced lung disease

    Get PDF
    This study tested the utility of optical coherence tomography (OCT)-based indentation to assess mechanical properties of respiratory tissues in disease. Using OCT-based indentation, the elastic modulus of mouse diaphragm was measured from changes in diaphragm thickness in response to an applied force provided by an indenter. We used a transgenic mouse model of chronic lung disease induced by the overexpression of transforming growth factor-alpha (TGF-a), established by the presence of pleural and peribronchial fibrosis and impaired lung mechanics determined by the forced oscillation technique and plethysmography. Diaphragm elastic modulus assessed by OCT-based indentation was reduced by TGF-a at both left and right lateral locations (p < 0.05). Diaphragm elastic modulus at left and right lateral locations were correlated within mice (r = 0.67, p < 0.01) suggesting that measurements were representative of tissue beyond the indenter field. Co-localised images of diaphragm after TGF-a overexpression revealed a layered fibrotic appearance. Maximum diaphragm force in conventional organ bath studies was also reduced by TGF-a overexpression (p < 0.01). Results show that OCT-based indentation provided clear delineation of diseased diaphragm, and together with organ bath assessment, provides new evidence suggesting that TGF-a overexpression produces impairment in diaphragm function and, therefore, an increase in the work of breathing in chronic lung disease

    Impact of technology-based interventions for children and young people with type 1 diabetes on key diabetes self-management behaviours and prerequisites: A systematic review

    Get PDF
    Background The role of technology in the self-management of type 1 diabetes mellitus (T1DM) among children and young people is not well understood. Interventions should aim to improve key diabetes self-management behaviours (self-management of blood glucose, insulin administration, physical activity and dietary behaviours) and prerequisites (psychological outcomes and HbA1c) highlighted in the UK guidelines of the National Institute for Health and Care Excellence (NICE) for management of T1DM. The purpose was to identify evidence to assess the effectiveness of technological tools in promoting aspects of these guidelines amongst children and young people. Methods A systematic review of English language articles was conducted using the following databases: Web of Science, PubMed, Scopus, NUSearch, SAGE Journals, SpringerLink, Google Scholar, Science Direct, Sport Discus, Embase, Psychinfo and Cochrane Trials. Search terms included paediatric, type one diabetes, technology, intervention and various synonyms. Included studies examined interventions which supplemented usual care with a health care strategy primarily delivered through a technology-based medium (e.g. mobile phone, website, activity monitor) with the aim of engaging children and young people with T1DM directly in their diabetes healthcare. Studies did not need to include a comparator condition and could be randomised, non-randomised or cohort studies but not single-case studies. Results Of 30 included studies (21 RCTs), the majority measured self-monitoring of blood glucose monitoring (SMBG) frequency, clinical indicators of diabetes self-management (e.g. HbA1c) and/or psychological or cognitive outcomes. The most positive findings were associated with technology-based health interventions targeting SMBG as a behavioural outcome, with some benefits found for clinical and/or psychological diabetes self-management outcomes. Technological interventions were well accepted by children and young people. For the majority of included outcomes, clinical relevance was deemed to be little or none. Conclusions More research is required to assess which elements of interventions are most likely to produce beneficial behavioural outcomes. To produce clinically relevant outcomes, interventions may need to be delivered for at least 1 year and should consider targeting individuals with poorly managed diabetes. It is not possible to determine the impact of technology-based interventions on insulin administration, dietary habits and/or physical activity behaviour due to lack of evidence

    Representation of cognitive reappraisal goals in frontal gamma oscillations

    Get PDF
    Recently, numerous efforts have been made to understand the neural mechanisms underlying cognitive regulation of emotion, such as cognitive reappraisal. Many studies have reported that cognitive control of emotion induces increases in neural activity of the control system, including the prefrontal cortex and the dorsal anterior cingulate cortex, and increases or decreases (depending upon the regulation goal) in neural activity of the appraisal system, including the amygdala and the insula. It has been hypothesized that information about regulation goals needs to be processed through interactions between the control and appraisal systems in order to support cognitive reappraisal. However, how this information is represented in the dynamics of cortical activity remains largely unknown. To address this, we investigated temporal changes in gamma band activity (35-55 Hz) in human electroencephalograms during a cognitive reappraisal task that was comprised of three reappraisal goals: To decease, maintain, or increase emotional responses modulated by affect-laden pictures. We examined how the characteristics of gamma oscillations, such as spectral power and large-scale phase synchronization, represented cognitive reappraisal goals. We found that left frontal gamma power decreased, was sustained, or increased when the participants suppressed, maintained, or amplified their emotions, respectively. This change in left frontal gamma power appeared during an interval of 1926 to 2453 ms after stimulus onset. We also found that the number of phase-synchronized pairs of gamma oscillations over the entire brain increased when participants regulated their emotions compared to when they maintained their emotions. These results suggest that left frontal gamma power may reflect cortical representation of emotional states modulated by cognitive reappraisal goals and gamma phase synchronization across whole brain regions may reflect emotional regulatory efforts to achieve these goals. Our study may provide the basis for an electroencephalogram-based neurofeedback system for the cognitive regulation of emotion.open0

    Reliability of dynamic contrast-enhanced magnetic resonance imaging data in primary brain tumours: a comparison of Tofts and shutter speed models

    Get PDF
    Purpose To investigate the robustness of pharmacokinetic modelling of DCE-MRI brain tumour data and to ascertain reliable perfusion parameters through a model selection process and a stability test. Methods DCE-MRI data of 14 patients with primary brain tumours were analysed using the Tofts model (TM), the extended Tofts model (ETM), the shutter speed model (SSM) and the extended shutter speed model (ESSM). A no-effect model (NEM) was implemented to assess overfitting of data by the other models. For each lesion, the Akaike Information Criteria (AIC) was used to build a 3D model selection map. The variability of each pharmacokinetic parameter extracted from this map was assessed with a noise propagation procedure, resulting in voxel-wise distributions of the coefficient of variation (CV). Results The model selection map over all patients showed NEM had the best fit in 35.5% of voxels, followed by ETM (32%), TM (28.2%), SSM (4.3%) and ESSM (<0.1%). In analysing the reliability of Ktrans, when considering regions with a CV<20%, ≈25% of voxels were found to be stable across all patients. The remaining 75% of voxels were considered unreliable. Conclusions The majority of studies quantifying DCE-MRI data in brain tumours only consider a single model and whole-tumour statistics for the output parameters. Appropriate model selection, considering tissue biology and its effects on blood brain barrier permeability and exchange conditions, together with an analysis on the reliability and stability of the calculated parameters, is critical in processing robust brain tumour DCE-MRI data

    Medial prefrontal cortex serotonin 1A and 2A receptor binding interacts to predict threat-related amygdala reactivity

    Get PDF
    Background\ud The amygdala and medial prefrontal cortex (mPFC) comprise a key corticolimbic circuit that helps shape individual differences in sensitivity to threat and the related risk for psychopathology. Although serotonin (5-HT) is known to be a key modulator of this circuit, the specific receptors mediating this modulation are unclear. The colocalization of 5-HT1A and 5-HT2A receptors on mPFC glutamatergic neurons suggests that their functional interactions may mediate 5-HT effects on this circuit through top-down regulation of amygdala reactivity. Using a multimodal neuroimaging strategy in 39 healthy volunteers, we determined whether threat-related amygdala reactivity, assessed with blood oxygen level-dependent functional magnetic resonance imaging, was significantly predicted by the interaction between mPFC 5-HT1A and 5-HT2A receptor levels, assessed by positron emission tomography.\ud \ud Results\ud 5-HT1A binding in the mPFC significantly moderated an inverse correlation between mPFC 5-HT2A binding and threat-related amygdala reactivity. Specifically, mPFC 5-HT2A binding was significantly inversely correlated with amygdala reactivity only when mPFC 5-HT1A binding was relatively low.\ud \ud Conclusions\ud Our findings provide evidence that 5-HT1A and 5-HT2A receptors interact to shape serotonergic modulation of a functional circuit between the amygdala and mPFC. The effect of the interaction between mPFC 5-HT1A and 5-HT2A binding and amygdala reactivity is consistent with the colocalization of these receptors on glutamatergic neurons in the mPFC

    Lmo4 in the Basolateral Complex of the Amygdala Modulates Fear Learning

    Get PDF
    Pavlovian fear conditioning is an associative learning paradigm in which mice learn to associate a neutral conditioned stimulus with an aversive unconditioned stimulus. In this study, we demonstrate a novel role for the transcriptional regulator Lmo4 in fear learning. LMO4 is predominantly expressed in pyramidal projection neurons of the basolateral complex of the amygdala (BLC). Mice heterozygous for a genetrap insertion in the Lmo4 locus (Lmo4gt/+), which express 50% less Lmo4 than their wild type (WT) counterparts display enhanced freezing to both the context and the cue in which they received the aversive stimulus. Small-hairpin RNA-mediated knockdown of Lmo4 in the BLC, but not the dentate gyrus region of the hippocampus recapitulated this enhanced conditioning phenotype, suggesting an adult- and brain region-specific role for Lmo4 in fear learning. Immunohistochemical analyses revealed an increase in the number of c-Fos positive puncta in the BLC of Lmo4gt/+ mice in comparison to their WT counterparts after fear conditioning. Lastly, we measured anxiety-like behavior in Lmo4gt/+ mice and in mice with BLC-specific downregulation of Lmo4 using the elevated plus maze, open field, and light/dark box tests. Global or BLC-specific knockdown of Lmo4 did not significantly affect anxiety-like behavior. These results suggest a selective role for LMO4 in the BLC in modulating learned but not unlearned fear

    Interaction of catechol O-methyltransferase and serotonin transporter genes modulates effective connectivity in a facial emotion-processing circuitry

    Get PDF
    Imaging genetic studies showed exaggerated blood oxygenation level-dependent response in limbic structures in carriers of low activity alleles of serotonin transporter-linked promoter region (5-HTTLPR) as well as catechol O-methyltransferase (COMT) genes. This was suggested to underlie the vulnerability to mood disorders. To better understand the mechanisms of vulnerability, it is important to investigate the genetic modulation of frontal-limbic connectivity that underlies emotional regulation and control. In this study, we have examined the interaction of 5-HTTLPR and COMT genetic markers on effective connectivity within neural circuitry for emotional facial expressions. A total of 91 healthy Caucasian adults underwent functional magnetic resonance imaging experiments with a task presenting dynamic emotional facial expressions of fear, sadness, happiness and anger. The effective connectivity within the facial processing circuitry was assessed with Granger causality method. We have demonstrated that in fear processing condition, an interaction between 5-HTTLPR (S) and COMT (met) low activity alleles was associated with reduced reciprocal connectivity within the circuitry including bilateral fusiform/inferior occipital regions, right superior temporal gyrus/superior temporal sulcus, bilateral inferior/middle prefrontal cortex and right amygdala. We suggest that the epistatic effect of reduced effective connectivity may underlie an inefficient emotion regulation that places these individuals at greater risk for depressive disorders

    Neuropsychiatric Symptoms in Patients with Aortic Aneurysms

    Get PDF
    BACKGROUND: Emerging evidence suggests that vascular disease confers vulnerability to a late-onset of depressive illness and the impairment of specific cognitive functions, most notably in the domains of memory storage and retrieval. Lower limb athero-thrombosis and abdominal aortic aneurysm (AAA) have both been previously associated with neuropsychiatric symptoms possibly due to associated intracerebral vascular disease or systemic inflammation, hence suggesting that these illnesses may be regarded as models to investigate the vascular genesis of neuropsychiatric symptoms. The aim of this study was to compare neuropsychiatric symptoms such as depression, anxiety and a variety of cognitive domains in patients who had symptoms of peripheral athero-thrombosis (intermittent claudication) and those who had an asymptomatic abdominal aortic aneurysm AAA. METHODOLOGY/PRINCIPAL FINDINGS: In a cross-sectional study, 26 participants with either intermittent claudication or AAA were assessed using a detailed neuropsychiatric assessment battery for various cognitive domains and depression and anxiety symptoms (Hamilton Depression and Anxiety Scales). Student t test and linear regression analyses were applied to compare neuropsychiatric symptoms between patient groups. AAA participants showed greater levels of cognitive impairment in the domains of immediate and delayed memory as compared to patients who had intermittent claudication. Cognitive dysfunction was best predicted by increasing aortic diameter. CRP was positively related to AAA diameter, but not to cognitive function. AAA and aortic diameter in particular were associated with cognitive dysfunction in this study. CONCLUSIONS/SIGNIFICANCE: AAA patients are at a higher risk for cognitive impairment than intermittent claudication patients. Validation of this finding is required in a larger study, but if confirmed could suggest that systemic factors peculiar to AAA may impact on cognitive function.Bernhard T. Baune, Steven J. Unwin, Frances Quirk and Jonathan Golledg

    Evaluation of the Oscillatory Interference Model of Grid Cell Firing through Analysis and Measured Period Variance of Some Biological Oscillators

    Get PDF
    Models of the hexagonally arrayed spatial activity pattern of grid cell firing in the literature generally fall into two main categories: continuous attractor models or oscillatory interference models. Burak and Fiete (2009, PLoS Comput Biol) recently examined noise in two continuous attractor models, but did not consider oscillatory interference models in detail. Here we analyze an oscillatory interference model to examine the effects of noise on its stability and spatial firing properties. We show analytically that the square of the drift in encoded position due to noise is proportional to time and inversely proportional to the number of oscillators. We also show there is a relatively fixed breakdown point, independent of many parameters of the model, past which noise overwhelms the spatial signal. Based on this result, we show that a pair of oscillators are expected to maintain a stable grid for approximately t = 5µ3/(4πσ)2 seconds where µ is the mean period of an oscillator in seconds and σ2 its variance in seconds2. We apply this criterion to recordings of individual persistent spiking neurons in postsubiculum (dorsal presubiculum) and layers III and V of entorhinal cortex, to subthreshold membrane potential oscillation recordings in layer II stellate cells of medial entorhinal cortex and to values from the literature regarding medial septum theta bursting cells. All oscillators examined have expected stability times far below those seen in experimental recordings of grid cells, suggesting the examined biological oscillators are unfit as a substrate for current implementations of oscillatory interference models. However, oscillatory interference models can tolerate small amounts of noise, suggesting the utility of circuit level effects which might reduce oscillator variability. Further implications for grid cell models are discussed
    corecore