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Abstract
Purpose The purpose of this study is to investigate the robustness of pharmacokinetic modelling of DCE-MRI brain tumour data
and to ascertain reliable perfusion parameters through a model selection process and a stability test.
Methods DCE-MRI data of 14 patients with primary brain tumours were analysed using the Tofts model (TM), the extended
Tofts model (ETM), the shutter speed model (SSM) and the extended shutter speed model (ESSM). A no-effect model (NEM)
was implemented to assess overfitting of data by the other models. For each lesion, the Akaike Information Criteria (AIC) was
used to build a 3Dmodel selection map. The variability of each pharmacokinetic parameter extracted from this map was assessed
with a noise propagation procedure, resulting in voxel-wise distributions of the coefficient of variation (CV).
Results The model selection map over all patients showed NEM had the best fit in 35.5% of voxels, followed by ETM (32%),
TM (28.2%), SSM (4.3%) and ESSM (< 0.1%). In analysing the reliability ofKtrans, when considering regions with a CV < 20%,
≈ 25% of voxels were found to be stable across all patients. The remaining 75% of voxels were considered unreliable.
Conclusions Themajority of studies quantifying DCE-MRI data in brain tumours only consider a singlemodel and whole tumour
statistics for the output parameters. Appropriate model selection, considering tissue biology and its effects on blood brain barrier
permeability and exchange conditions, together with an analysis on the reliability and stability of the calculated parameters, is
critical in processing robust brain tumour DCE-MRI data.

Keywords Glioma . DCE-MRI . Shutter speedmodel . Tofts model . Primary brain tumour

Introduction

Dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) is a non-invasive methodology that allows tissue
perfusion and permeability to be quantified through analysis

of T1-weighted MR images acquired before, during and after
an intravenous (IV) injection of a gadolinium-based contrast
agent (CA).

Nowadays, DCE-MRI finds application in a wide range of
oncological studies. In brain tumours, the Tofts model (TM),
also known as the standard model, together with its extended
version (EMT), are regularly applied [1–6]. There are a few
examples of the application of shutter speed model (SSM) in
brain tumours in the literature [7, 8] while it has been mainly
implemented in the study of breast cancer [9], prostate cancer
[10] and hepatocellular carcinoma [11]. The extended shutter
speed model (ESSM), also called second generation shutter
speed model, or BALDERO (blood agent level dependent and
extravasation relaxation overview), has previously found ap-
plications only in hepatocellular carcinoma [12] and simulated
data [13]. These four models assume that the CA passes read-
ily between the intravascular compartment and the tissue in-
terstitium. However, this assumption is not valid in the
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presence of the intact blood-brain barrier (BBB), where there
is negligible leakage. In this case the CAwill only affect the
intravascular T1 value on first pass of the bolus. In addition,
the vascular component of a brain tumour is heterogeneous
and certain regions may not be perfused (e.g. necrotic re-
gions). We therefore also implemented a no-effect model
(NEM) which assumes negligible effect of the CA on the
voxel T1 properties.

In the last decade, the number of pharmacokinetic studies
of DCE-MRI brain data has increased as this quantification
technique has been found to be indicative of the malignant
grade of brain tumours [14]. However, two main issues need
to be taken into account when analysing DCE-MRI data.
Firstly, pharmacokinetic studies often show different and dis-
cordant results, thus bringing the reliability of this quantifica-
tion technique into question [15, 16]. In fact, DCE-MRI data
analysis is affected by (a) the acquisition protocol (trade-off
between spatial and temporal resolution) [17] and (b) the
quantification procedure. Furthermore, most studies present
only results from application of a single pharmacokinetic
model and the consequent statistical analysis of averaged
values evaluated over the whole tumour volume [18–20].
This approach completely ignores the particularly heteroge-
neous nature of brain tumour vasculature and vascular
permeability.

In this prospective study, we investigate the robustness of
pharmacokinetic modelling of DCE-MRI brain data. We pro-
pose a method to identify reliable DCE-MRI data based on a
model selection procedure, building on previous work by
Bagher-Ebadian et al. [3], and a stability test: five different
pharmacokinetic models (TM, ETM, SSM, ESSM and NEM)
are assessed and the Akaike information criteria index is used
for model selection; we then evaluate the stability of each
parameter extracted from the model of choice, in terms of
coefficients of variations (CVs), through a noise propagation
procedure.

Materials and methods

Patient population

Fourteen patients (7 male, 7 female; aged 23–73 years, mean
40 years) with primary brain tumours were recruited to this
study. Ethical approval was given by the local ethics commit-
tee and informed consent was obtained from all patients.
Patients had an MRI at diagnosis, prior to receiving any treat-
ment. Following surgery, histopathological data showed three
patients with WHO grade IV glioblastoma, two patients with
WHO grade III astrocytoma, two patients withWHO grade III
oligodendroglioma, three patients with WHO grade II astro-
cytoma, three patients with WHO grade II oligodendroglioma

and one patient with a WHO grade I dysembryoplastic
neuroepithelial tumour.

DCE-MRI data acquisition

MR images were acquired on a 3-T Siemens Verio MRI
system using a 32 channel head coil; including pre- and
post-contrast T1-weighted images, T2-FLAIR images and
a DCE sequence with a variable flip angle pre-contrast
T1 map acquisition. The DCE-MRI protocol included
five pre-contrast spoiled gradient recalled echo
(SPGRE) 3D vibe sequences at five different flip angles
(2, 8, 12, 15, 20, 26), and a dynamic 3D vibe sequence
(TR = 3.34 ms, TE = 0.99 ms, flip angle = 26, FOV 240 ×
240 mm, acquisition matrix 128 × 128, slice thickness
5 mm, slice gap 1 mm, 80 volumes). To obtain acquisi-
tions before, during and after the injection of the CA,
0.1 mmol/kg body-weight gadolinium-diethylene
triaminepentacetate (Gd-DTPA, Gadovist) was injected
using a power injector on the fifth acquisition using a
flow rate of 3 ml/s immediately followed by 20 ml saline
solution. The 3D acquisition allowed us to cover the
entire brain; 80 time points were acquired with an aver-
age temporal resolution of 2.89 s and a total acquisition
time of ≈ 4 min.

DCE-MRI data analysis

Volumes of interest (VOIs) were drawn by a Radiologist and
confirmed by a Consultant Neuroradiologist for each patient
around T2-FLAIR hyperintense regions and on a 2-cm-
diameter circular region in normal-appearing contra-lateral
white matter. DCE-MRI data were analysed using a semi-
automated in-house software written in MATLAB
(Mathworks, R2017a). Before the application of any of the
aforementioned pharmacokinetic models, we calculated the
relaxation rate at baseline (R10) and relaxed signal (M0) as
3D maps, with the Ernst formula (assuming TE < <T2*) using
the set of SPGRE pre-contrast images acquired at different flip
angles [21]:

S αð Þ ¼ M0 sin αð Þ 1−e−R10TR

1−cos αð Þe−R10TR
ð1Þ

where α is the flip angle having values [(2, 8, 12, 15, 20, 26])
and TR is 3.34 ms. Reformulating Eq. 1 as a linear regression
system (y = cx + d) following the method described by
Liberman et al. in [22], gives:

S αð Þ
sin αð Þ ¼ E

S αð Þ
tan αð Þ þM 0 1−Eð Þ ð2Þ

where E ¼ e−R10TR.
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The slope c = E and intercept d =M0 (1 − E) can thus be
estimated and continuing from [22], R10 and M0 can then be
obtained through:

R10 ¼ −
log cð Þ
TR

; M 0 ¼ d
1−c

ð3Þ

Then, 4D (x, y, z, t) post-injection longitudinal relaxation
rate R1(t) maps for each dynamic phase are calculated using
signal intensity data from the post-contrast dynamic series:

R1 tð Þ ¼ −ð1=TRÞlog 1− Aþ Bð Þ
1−cos αð Þ Aþ Bð Þ ð4Þ

where α = 26, A = S(t) − S(0)/M0 sin(α), B = (1 − E)/1 − E ·
cos(α). S(0) and S(t) are the pre-contrast injection signal in-
tensity and the signal at the dynamic phase t, respectively [23].

The longitudinal relaxation rate is determined in order to
calculate the concentration of the CA. This is done through a
calibration between the concentration of CA [CA] and the
measured H2O MR signal. This can be modelled by either a
linear or nonlinear relationship as described below.

Tofts model (TM)

In applying the Tofts model to brain tumours, we expressed
the flux of the tracer across two well-mixed compartments
(blood and the extravascular, extracellular space) through the
volume transfer constant Ktrans [24]. The TM, also called the
standard model, assumes negligible plasma compartment and
can describe weakly vascularized brain tissue. More impor-
tantly, it assumes a linear dependence of R1 on [CA] (that is
the equivalent of assuming the equilibrium transcytolemmal
water exchange kinetics in the fast exchange limit(FXL)):

R1 tð Þ ¼ r1 CA tð Þ½ � þ R10 ð5Þ

where r1 is the CA relaxivity.
The extravasation of the contrast from the plasma to the

extravascular extracellular space (EES) was accounted by the
Kety-Schmidt rate law [25]:

CAo Tð Þ½ � ¼ Ktrans∫t0 CAp tð Þ� �
e
Ktrans T−tð Þ

ve dt ð6Þ

where Ktrans is the first-order rate constant for plasma to inter-
stitium CA transport (min−1) and ve is a measure of the EES
volume fraction.

The ratio between Ktrans and ve results in the third pharma-
cokinetic parameter kep, which is the back flux rate constant
(min−1). [CA0] and [CAp] are the concentration of CA in the

‘outside’ space (the extravascular extracellular space) and in
the plasma, respectively. [CAp] is also called the arterial input
function (AIF). The fitting of Eq. 6 was performed using the
inbuilt MATLAB fminsearch function, which uses the Nelder-
Mead simplex algorithm as described in Lagarias et al. [26].
The minimization procedure is done voxel-wise in order to
obtain a 3D map for each pharmacokinetic parameter. We
set input values of 0.1 and 0.01 for the Ktrans and ve, respec-
tively, and run the algorithm with 10,000 iterations and a tol-
erance of 10−8. The fitting procedure was also carried out with
the user developed MATLAB function fminsearchbnd [27].
This function takes into consideration boundaries in the output
values settings, which were set so as to consider only positive
values. A comparison between the two functions’ results was
done in terms of goodness of fit by estimating the Akaike
Information Criteria (AIC) for each method using Eq. 7:

AIC ¼ 2k þ nln
RSS
n

� �
þ 2k k þ 1ð Þ

n−k−1
ð7Þ

where n is the number of data points, k the number of fitted
parameters and RSS is the residual sum of squares [28].

In general, when performing model selection using the
AIC, the model resulting with the lowest AIC value is the
model that represents the best balance between complexity
(i.e. the number of parameters) and goodness of fit (i.e. lower
RSS). In this case, as the number of parameters is the same,
only the goodness of fit is being tested. A comparison between
the AIC maps relative to the bounded and unbounded proce-
dure allowed the estimation of final Ktrans, kep and ve maps
where the value of each voxel was obtained from the fitting
procedure with the best fit (lowest AIC) (Fig. 1).

Shutter speed model (SSM)

Both the TM and its extended version (2.3.3) embed the im-
plicit assumption that equilibrium transcytolemmal water ex-
change (between the intracellular space and extracellular ex-
travascular space) is infinitely fast, or that the system is in,
what is called, the fast exchange limit [29]. Water exchange
between the intracellular space and the extracellular extravas-
cular space effects the degree of T1 shortening caused by CA.
To account for this effect on the brain MRI signal amplitude,
we applied the shutter speed model (SSM), which introduces a
new pharmacokinetic parameter, the mean intracellular water
molecule lifetime, τi [29].

In the SSM, Eq. 5 is applied to the distribution of the CA in
the blood, without assuming that the equilibrium
transcytolemmal water exchange kinetics are in the FXL.
The longitudinal relaxation rate is measured as:

R1b tð Þ ¼ r1p 1−hð Þ CAp tð Þ� �þ R10p ð8Þ
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where b stands for the whole blood, p for the plasma and h the
blood haematocrit. However, about half of the water in the
blood is intracellular and cannot be accessed directly by the
CA molecules [30]. The transport outside the erythrocytes
therefore needs to be considered, as described by the two
equilibria:

H2Oi↔H2Op ð9Þ

H2Op þ CAp↔H2O � CAp ð10Þ

Themeanwater molecule lifetime in commonly used CA is
normally < 10−7 s, and the linear Eq. 5 is suitable for homo-
geneous solutions. In the case of erythrocytes, Eq. 10 is also
considered fast for some commonly measured [CAp] values
[30, 31]. After extravasation, the CA is commonly distributed
into the interstitial extracellular space, at a rate defined by:

R*
1 tð Þ ¼ r10p0 CA0 tð Þ½ � þ R10 ð11Þ

where R1*(t) is the rate constant of the extravascular water
signal, r10 is the interstitial CA relaxivity and p0 is the fraction
of the extracellular tissue water. The application of Eq. 11 to
biological tissues assumes that the interstitium is a homoge-
neous solution and that the system remains in the fast ex-
change limit. However, many studies have shown that, even

though the equilibrium in Eq. 10 is fast, the FXL assumption
is not true for all [CA0] values following a bolus injection
[30]. [CA0] depends on the dimensions of the parenchymal
cells that are generally much larger than erythrocytes and have
a less water-permeable cytolemmae. Furthermore, tissue pa-
renchyma cannot be considered as a single homogeneous so-
lution and a single MRI voxel will constitute a number of
compartments. The main result of this compartmentalization
is given by:

R1L tð Þ ¼ 1=2ð Þf2R1i þ r1o CAo tð Þ½ � þ R10 þ R1i þ 1=τ ið Þ=

po−f 2=τ i−r1o CAo tð Þ½ �− R10 þ R1i þ 1=τ ið Þ=poð Þ2

þ 4 1−poð Þ=τ2i po�
1
2g

ð12Þ

where R1L(t) is the long relaxation rate constant of the shutter
speed model. R1i is the H2O rate constant in the absence of
exchange of CA and τi is the average intracellular lifetime of a
water molecule. The SSM was fitted by substituting Eq. 12 in
Eq. 6 using the MATLAB functions fminsearch and
fminsearchbnd, similarly to the TM. The initial estimates for
the SSM Ktrans and ve were taken as the outputs of the TM,
while the initial estimate for τi was set at 0.1 [13]. The final
Ktrans, kep, ve and τi maps were obtained from the fitting pro-
cedure with the best fit (lowest AIC value) as described in
Fig. 1.

<yes no

map

map

map

map

bounded fit unbounded fit

fin
al

 
m

ap

fin
al

 
m

ap

Fig. 1 The fitting procedure for
Ktrans. A bounded and unbounded
fitting were calculated together
with the Akaike Information
Criteria (AIC) map (AICb and
AICu for the bounded and un-
bounded procedure, respectively).
The final value of Ktrans, for each
voxel of the map, was the one
obtained from the function with
the lowest AIC (kb when AICb <
AICu and ku vice versa). The same
procedure was carried out for
each parameter
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Extended Tofts model (ETM)

For highly perfused brain tissue, we applied the extended ver-
sion of TM, which was introduced by Tofts in 1999 [32]. The
ETMfits data with an additional parameter: the fractional plas-
ma volume, vp [32]. This model is able to distinguish the
effects due to contrast leakage from those due to intravascular
contrast. Eq. 6 becomes:

CAo½ � Tð Þ ¼ vpCp tð Þ þ Ktrans∫T0Cp tð Þe−Ktrans T−tð Þ=vedt ð13Þ

The ETM was fitted by substituting Eq. 13 in Eq. 6 using
the MATLAB functions fminsearch and fminsearchbnd, sim-
ilarly to the TM and SSM. The initial estimates for ETM Ktrans

and ve were again taken from the output of the TM and the
initial estimate for vp was set at 0.01 [13]. The final K

trans, kep,
ve and vp maps were obtained from the fitting procedure with
the best fit (lowest AIC) as described in Fig. 1.

Extended shutter speed model (ESSM)

The ESSM accounts for the contribution of the CA from the
brain plasma compartment. This includes both vb, the fraction-
al blood volume and τb, the intravascular water molecule life-
time [13]. The contribution of the water signal comes from the
three compartments (whole blood, EES and intracellular
space) and is described by the matrix format of the Bloch
equation [13]:

dM
dt

¼ XMþC ð14Þ

where the column vectors are M = (Mb, Mo, Mi) and
C = (Mb0R1b, Mo0R1o, Mi0R1i) with the 1H2O magnetization
vectorM ≈ to the signal S. The exchangematrixX is given by:

X ¼
− R1b þ kboð Þ kob 0

kbo − R1o þ kob þ koið Þ k io
0 koi − R1i þ k ioð Þ

0
@

1
A ð15Þ

The subscripts b, o and i stand for blood, outside space and
intracellular space, respectively. kbo (= 1/τb) represents the
blood to interstitium transfer of water; kio (= 1/τi) the transfer
of water from the intracellular space to the interstitium; kob
(proportional to 1/τo) the EES to blood transfer and koi the
EES to intracellular transfer [13]. For a SPGR sequence, the
solution to Eq. 13 is the matrix form of the Ernst-Anderson
relationship [33] which assumes that if the change in [CA] is
relatively small during the acquisition, at every discrete data
acquisition time point, the relaxation time can be estimated
using:

S ¼ I−e−XTR cos αð Þ� �−1
I−e−XTR� �

S0 sin αð Þ ð16Þ

I is the identity matrix and S0 (= (Sb0, So0, Si0)) is the signal
at baseline.

The ESSM was fitted by considering the measured signal
E(t) as a combination of the signals in the three compartments
(blood, outside space and intracellular space) [12] using:

E tð Þ ¼ Sb þ So þ Si
Sb0 þ So0 þ Si0

−1 ð17Þ

Furthermore, Eq. 16 was simplified to:

S ¼ sin að Þ � A � S0 ð18Þ
where the column vectors are S = (Sb, So, Si) and

A ¼ I−e−XTR cos αð Þ½ �−1 I−e−XTRð Þ.
The model was fitted by substituting Eq. 18 into Eq. 17

using the MATLAB function fminsearch function. The out-
puts of the SSM model were used as the initial estimates for
Ktrans and vo and one third of the measured signal was used as
the initial estimate for Sb0, So0 and Si0. Furthermore the initial
estimates for kbo, kob, koi and kio were taken from literature
defined values as 1.2, 1.5, 1.1 and 1.2, respectively [13]. The
following parameters were also derived: τb = 1/kbo, τi = 1/kio,
vb = (kob − koi − ((kio/vo)fw) − kio)/((kbo + kio)/vo) where fw is
tissue volume fraction accessible to mobile aqueous solutes
(assumed to be a constant and set to 0.8) and vi = 1 − (vb + vo)
[13].

No-effect model (NEM)

The no-effect model describes the case where [CA] within a
brain voxel is so low that there is no permeability or vascular
filling. In this situation, the MR signal is assumed to be un-
perturbed by the injection of the gadolinium-based CA and, as
a consequence, the longitudinal relaxation rate does not
change from its baseline value (R10). The system is therefore
described by this value at all times such that the data is fitted
by the constant R10.

Arterial input function (AIF)

An additional ROI was drawn around the external carotid
artery for the calculation of the image-derived AIF [34]
(Fig. 2). Signal intensity curves were converted to R1-time
curves by using the baseline signal intensity before the first
pass of the CA as a reference, setting the haematocrit in the
blood to 0.45, and getting the baseline blood T1 from the T10
map (Eq. 8).

Model comparison

A model comparison was carried out using the AIC to test for
the best model in a given voxel. In particular, in the presence
of exchange (where the NEM fails in the description of data), a
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voxel-wise comparison between models was carried out
(with ETM and SSM being an extension of the TM, and
the ESSM an extension of the SSM) to indicate which
model provided the best fit using the AIC in each voxel.
The selection method is shown in the flowchart in Fig. 3.
The choice was expressed with a value of 1, 2, 3, 4 or 5 for
the TM, ETM, SSM, ESSM and NEM, respectively, in a

volumetric mask (same dimensions of the original tumour
volume mask). The percentage of 1 s, 2 s, 3 s, 4 s and 5 s in
each mask was evaluated to quantify the frequency of mod-
el choice. The model selection map was used to build final
pharmacokinetic maps for the Ktrans, kep and ve, where, for
each voxel, the value is the result of the fitting of the model
of choice (lowest AIC).

Fig. 3 AIC model selection flowchart. The figure shows the hierarchical approach used to determine which model provided the best fit when using the
Akaike Information Criteria (AIC)

a b

Fig. 2 Measurement of the arterial input function (AIF). The VOI was placed in the carotid artery for the extraction of the AIF as shown in the axial T1
VIBE image in a. The time intensity curve for the concentration of contrast reagent in the plasma in the VOI indicated in red in a is shown in B

Neuroradiology



Stability of pharmacokinetic parameters

Once themodel selection had been selected, the stability of each
parameter within the selected models was evaluated in a simu-
lation environment. Tissue curves were generated back from
the extracted pharmacokinetic parameters and signal intensity
curves were calculated with the inverse formula of Eq. 4. White
Gaussian noise was added to the signal intensity curves using a
signal to noise ratio (SNR) of 20. The SNR value for the sim-
ulated data was set by evaluating the SNR of the acquired data
from the second and third phase of the dynamic acquisition
sequence using the subtraction method [35]. The simulated
noisy signal intensity curves were reconverted to noisy tissue
concentration curves, and fitted to the selected pharmacokinetic
model. This procedure was repeated 500 times for every kinetic
parameter and the variability of each parameter was expressed
in terms of coefficient of variation (CV): the percentage ratio
between the standard deviation and the mean.

Results

Model selection and parameter variability

The behaviour of each model was assessed by studying the
quality of fit for each of the models. The input data, together
with the fitted curves were normalized by the maximum value
of the input data in order to compare results from the different
fits. An example of a comparison of fit is shown in Fig. 4. For

each tumour, a map with the result of the statistical compari-
son among models was built (Fig. 5). In this map, each colour
represents the model for which the voxel-wise AIC value was
lowest: The selected model of choice representing majority of
low AIC was NEM (35.5% of voxels), followed by the ETM
(32%), TM (28.2%), SSM (4.3%) and ESSM (< 0.1%). Fig. 5
shows the model selection map evaluated for two different
lesions. Furthermore, final pharmacokinetic maps, for the
Ktrans, kep and ve, were built considering the model selection
procedure. Within the final pharmacokinetic maps, each voxel
was represented by the model with the best fit (lowest AIC)
within that voxel. For each of these maps, the stability of each
parameter and for each lesion was presented in terms of CV
maps. Table 1 shows the results of the stability test on the final
Ktrans map. The total number of voxel of the lesion, for each
patient, together with the average Ktrans value evaluated over
the whole tumour, is shown. Furthermore, the map was
thresholded with a CV lower than 10, 20 and 50%, and the
resultant percentage of preserved voxels (and their average
value) is shown. Fig. 6 shows two final Ktrans maps with their
CV map overlaid on them (A and D).

Discussion

In this study, we showed that in over one third of the brain
tumours voxels (35.5%), standard model fitting of DCE-MRI
data was inconclusive and therefore fitting these models to the
data would lead to incorrect perfusion parameters. Considering

Fig. 4 Normalized signal intensity curves in a voxel of an enhancing
lesion fitted with the NEM (red), TM (blue), ETM (green), SSM
(yellow) and ESSM (pink). The quality of fitting was evaluated with

the Akaike Information Criteria. AIC value: − 103 for the NEM, − 445
for TM, − 454 for ETM, − 531 for SSM and − 291 for ESSM
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a CVof 20%, only ≈ 25% of remaining voxels were found to be
reliable. The reproducibility of this technique and, as a conse-
quence, its reliability can be improved by improving the main
sources of variability in quantitative DCE-MRI (the acquisition
method and the quantification process) [16]. Nonetheless, in
most studies, the intrinsic heterogeneity of the lesion is ignored
by quantifying the perfusion with one single pharmacokinetic
model and, more importantly, carrying out statistical analyses
on one single whole tumour statistic (usually the average). In
this study, we investigated the reliability of DCE-MRI focusing
on the quantification analysis. We took into consideration the
particularly heterogeneous nature of brain tumour vascular

permeability due to the presence of the BBB, as well as exis-
tence of necrotic regions and provided a method to identify
robust DCE-MRI data based on a model selection procedure
and a stability test.

DCE-MRI models

MR scanners usually employ post processing perfusion tools
which fit DCE data with the TM. This model (together with its
extended version [32]) considers the system in a fast exchange
limit [36, 37], assuming an infinitely fast transcytolemmal
water exchange between the EES and the intracellular space,

Table 1 Ktrans stability test results

CV ≤ 10% CV ≤ 20% CV ≤ 50%

Diagnosis WHO grade TOT n. voxel Whole tumour
Ktrans mean

% n. voxel Ktrans mean % n. voxel Ktransmean % n. voxel Ktransmean

P01 Dysembryoplastic
neuroepithelial
tumour

I 791 0.19 18 0.57 36 0.32 51 0.28

P02 Astrocytoma II 3284 0.88 3 1.81 15 1.09 48 1.10

P03 Oligodendroglioma II 1266 0.83 9 1.30 20 1.22 38 1.43

P04 Oligodendroglioma II 2309 1.69 8 1.32 14 1.16 39 2.49

P05 Astrocytoma II 4321 0.72 13 1.62 22 1.67 45 1.32

P06 Astrocytoma II 2809 0.70 5 1.31 18 1.15 58 1.01

P07 Astrocytoma II 2904 0.48 8 2.06 16 1.49 33 1.03

P08 Oligodendroglioma III 1762 0.56 9 2.31 24 1.38 51 0.90

P09 Oligodendroglioma III 3690 1.47 7 2.12 29 2.55 67 1.96

P10 Astrocytoma III 8887 0.69 7 2.52 16 1.99 46 1.09

P11 Astrocytoma III 1899 0.46 7 1.76 15 1.28 32 0.96

P12 Glioblastoma IV 2704 0.25 13 0.42 22 0.50 38 0.47

P13 Glioblastoma IV 6803 0.41 35 0.81 48 0.69 64 0.57

P14 Glioblastoma IV 1958 1.46 46 1.31 64 1.25 81 1.41

The stability test consisted in the evaluation of maps of the coefficient of variation (CV). The table shows the stability of the final Ktrans maps. For each
patient, the first two columns show the total number of voxels of the lesion and the average value ofKtrans evaluated across the whole lesion. Following,
the percentage of voxels with a CV lower than 10, 20 and 50% and the relative mean Ktrans values are shown. The WHO grade and diagnosis of each
lesion are also reported

Fig. 5 Statistical model
comparison for two lesions. Each
colour is representative of the
model which best fitted the input
data. An example of one slice of
an enhancing (a, WHO grade IV)
and non-enhancing (b, WHO
grade II) lesion is shown
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which does not affect the overall signal decrease [36, 37].
Therefore, many studies on the cell membrane water perme-
ability coefficient have shown FXL to be physiologically un-
reasonable and inconsistent [38]. The shutter speed model was
introduced to reflect a more realistic tissue environment. The
model accounts for the intercompartmental water exchange
effect, modelling this non-infinitely-fast exchange with the
mean intracellular water molecule lifetime τi. In 2005, Li
et al. introduced a second generation of the shutter speed
model which considers also a non-infinitely fast equilibrium
transendothelial water exchange.

Model comparison and stability

The heterogeneity that exists in brain tumours means that one
model is insufficient in explaining the different biologies that
exist in different tumour regions. Multiple pharmacokinetic
models are required for a complete description of the tissue.
This variability is testified by the model selection procedure
which showed how, in a single slice of one tumour, multiple
models perform better. This result confirms the study of
Bagher-Ebadian where they implemented a selection method
based on nested models [3]. They found that in the necrotic
core of the tumour, models describing vascular filling with no
microvascular leakage (similar to the TM) and leakage with-
out vascular reabsorption were selected because of the lack of

blood flow. They also hypothesised that the model describing
leakage with reabsorption (similar to the ETM) would be se-
lected in the fast growing rims of the lesion. Our results show
that there are a number of regions in the tumour where the CA
exudation is prevented by the BBB and where the concentra-
tion of CA is so low that the evidence of perfusion is missing.
In this case, the use of the NEM is recommended as the use of
different models could result only in overfitting the data. In
fact, our results showed that no leakage of the CA into the
interstitium and the lack of flow of the CA through the tissue
made the NEM the model of choice for the majority of re-
gions, particularly in the non-enhancing lesions (37.5% of
voxels). The result is very close to the ETM (32%), which
was the model of choice in the enhancing lesions (54.8%).
This suggests that, in areas where there is enhancement, a
model with three parameters performs better and that the
choice is dependent on the underlying state of the tissue. In
fact, both the ETM and SSM are fitted by three parameters but
the third parameter is very different between the two models
(vp for the ETM describing a vascular component in the tissue,
and τi for the SSM describing the transcytolemmal water ex-
change). Furthermore, with the implementation of the ESSM,
we saw that the transendothelial water exchange did not have
any impact on the signal (compared with parameters derived
by the fitting of simpler models). It is necessary to consider
that the ESSM required nine parameters to be fitted and that

Fig. 6 The stability of each pharmacokinetic parameter extracted from
the fitting of the model of choice was evaluated, for each lesion, in terms
of coefficient of variation in a simulation environment. a and d show two
Ktrans maps in enhancing (a) and non-enhancing (d) lesions. The reliabil-
ity of DCE-MRI data was evaluated by setting a threshold of 20% for the

CV. This is overlaid on the Ktrans maps in a and d, shown in red, such that
only values of Ktrans under this threshold are displayed on the blue/green
colour map. Two tissue activity curves (TACs) relative to two reliable
(CV = 12% and CV= 4%) voxels are plotted in b and e. c and f show the
TACs relative to two unreliable voxels (CV = 128% and CV= 97%)
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the cost of fitting extra parameters is often contrary to the
principle of parsimony. In fact, in fitting data to a noise-
limited dataset, the estimation could be very poor and depen-
dent on the optimization procedure itself (the initial condi-
tions, for example) [3]. We compared the AIC values from
the different fitting procedures to check whether a model with
more parameters is more appropriate than a simple one. The
ESSM was selected as the model of choice by < 0.1% of
voxels, indicating that a model with three parameters per-
formed better in the description of brain tumours and further
confirming the poor quality of fit observed for the ESSM
model. Our outcome agreed with the results of Duan et al.
[39]. Using representative in silico and clinical (cervical can-
cer) DCE-MRI data, they demonstrated the sensitivity of com-
plicated models (parameters > 3) to noise and their decreasing
probability of being selected in low signal-to-noise data [39].

The reliability of DCE-MRI data is not only based on the
goodness of fit of the chosen pharmacokinetic model, but also
on the robustness of the extracted parameters. For this reason, we
assessed, for each lesion and for each parameter, the coefficient
of variation. We worked in a simulation environment where we
addedGaussian noise to our signal andwe fitted the noisy curves
500 times. This procedure resulted with a heterogeneous distri-
bution of CVs that was not linked to contrast enhancement. In
fact, Fig. 6 shows the plot of four different tissue activity curves
together with the Ktrans value and its CV in an enhancing and
non-enhancing tumour. The curves in Fig. 6b, c belong to the
same enhancing lesion and while they correspond to similar
Ktrans values of 0.81 and 0.52 [1/min], they varied by 12 and
128%, respectively. On the other hand, the curves in Fig. 6e, f
belong to the same non-enhancing lesion and show regions with
both a low (4%) and a high (97%) variability.

We set three different thresholds for the CV to evaluate the
variability of the Ktrans. Table 1 shows the percentage of voxels
and their relative mean Ktrans value at different CVs thresholds
(10, 20 and 50%), for each lesion and for each patient. Higher
grade glioma tend to have more voxels with a lower CVand also
a more stable value ofKtrans while, for some of the other patients,
the mean value of Ktrans is highly affected by the portion of
voxels taken into consideration (P04, P07). This result confirmed
the improper use of one average value in statistical comparisons
of brain tumours. Not only because of the heterogeneity of the
tissue under investigation but also, and more importantly, be-
cause it is affected by the reliability of fit within voxels.

Finally, Fig. 6 gives a graphical representation of this effect
showing Ktrans values under the 20% threshold of CV cover-
ing only 25% of voxels (an average percentage value evaluat-
ed among all patients). This result suggested that only this
selection of voxels represents robust values, which can be
used in the following statistical analyses, as, more importantly,
in clinical evaluations. The selection of the threshold that
makes DCE-MRI robust is, however, dependent on the effect
size that is being measured and hence will vary across studies.

The main limitation of this study is the small size of the
dataset. Furthermore, the sensitivity of DCE-MRI data to wa-
ter exchange effect was reduced by the 26° flip angle acquisi-
tion (exchange-minimized approach) [40]. As a consequence,
the precision of the τi parameter extracted might be low.

In conclusion, DCE-MRI methods hold great promise for
quantitative in vivo evaluation of permeability and vascular
properties under different pathophysiological conditions. It
allows us to identify, and quantitatively measure, smaller
changes in permeability for pathological conditions effecting
the BBB, than would be observed through visuassessment of
post-contrast T1-weighted images. Different models yield dif-
ferent pharmacokinetic parameters and, for this reason, a mod-
el selection is critical for the appropriate analysis of DCE-MRI
time courses based on the regional tissue biology, specifically
permeability and vasculature. Future work needs to assess the
physiological basis for each model in the reliable selection of
DCE-MRI data. The applicability of each model depends on
the physiology, anatomy and heterogeneity of the tumour and
the tumour microenvironment. In addition, due to the noisy
nature of DCE-MRI data, a model selection procedure alone is
not enough: pharmacokinetic parameters need to be validated
with a stability test in order to give only robust results for
statistical analyses and clinical evaluation.

Funding This work was funded in part by the National Institute for
Health Research (NIHR) Imperial Biomedical Research Centre (BRC),
the Brain Tumour Charity and the Brain Tumour Research Campaign.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Ethical approval The study was reviewed and approved by the London–
Fulham Research Ethics Committee.

Informed consent Written and informed consent was obtained from all
participants before recruitment to the study and all data was anonymised
in accordance with the EU General Data Protection Regulation.

Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

1. Haris M, Gupta RK, Singh A, Husain N, Husain M, Pandey CM,
Srivastava C, Behari S, Rathore RK (2008) Differentiation of infec-
tive from neoplastic brain lesions by dynamic contrast-enhanced
MRI. Neuroradiology 50(6):531–540. https://doi.org/10.1007/
s00234-008-0378-6

Neuroradiology

https://doi.org/10.1007/s00234-008-0378-6
https://doi.org/10.1007/s00234-008-0378-6


2. Jia Z, Geng D, Xie T, Zhang J, Liu Y (2012) Quantitative analysis
of neovascular permeability in glioma by dynamic contrast-
enhanced MR imaging. J Clin Neurosci 19(6):820–823. https://
doi.org/10.1016/j.jocn.2011.08.030

3. Bagher-Ebadian H, Jain R, Nejad-Davarani SP,Mikkelsen T, LuM,
Jiang Q, Scarpace L, Arbab AS, Narang J, Soltanian-Zadeh H
(2012) Model selection for DCE-T1 studies in glioblastoma.
Magn Reson Med 68(1):241–251

4. Ferl GZ, Xu L, Friesenhahn M, Bernstein LJ, Barboriak DP, Port
RE (2010) An automatedmethod for nonparametric kinetic analysis
of clinical DCE-MRI data: application to glioblastoma treated with
bevacizumab. Magn Reson Med 63(5):1366–1375. https://doi.org/
10.1002/mrm.22335

5. Zhu XP, Li KL, Kamaly-Asl ID, Checkley DR, Tessier JJ, Waterton
JC, Jackson A (2000) Quantification of endothelial permeability,
leakage space, and blood volume in brain tumors using combined
T1 and T2* contrast-enhanced dynamic MR imaging. J Magn
Reson Imaging 11(6):575–585

6. O'Connor JP, Jackson A, Parker GJ, Jayson GC (2007) DCE-MRI
biomarkers in the clinical evaluation of antiangiogenic and vascular
disrupting agents. Br J Cancer 96(2):189–195. https://doi.org/10.
1038/sj.bjc.6603515

7. Rooney WD, Li X, Sammi MK, Bourdette DN, Neuwelt EA,
Springer CS Jr (2015) Mapping human brain capillary water life-
time: high-resolution metabolic neuroimaging. NMR Biomed
28(6):607–623. https://doi.org/10.1002/nbm.3294

8. Li X, Rooney WD, Varallyay CG, Gahramanov S, Muldoon LL,
Goodman JA, Tagge IJ, Selzer AH, Pike MM, Neuwelt EA,
Springer CS Jr (2010) Dynamic-contrast-enhanced-MRI with ex-
travasating contrast reagent: rat cerebral glioma blood volume de-
termination. J Magn Reson 206(2):190–199. https://doi.org/10.
1016/j.jmr.2010.07.004

9. Inglese M, Cavaliere C, Monti S, Forte E, Incoronato M, Nicolai E,
Salvatore M, Aiello M (2019) A multi-parametric PET/MRI study
of breast cancer: evaluation of DCE-MRI pharmacokinetic models
and correlation with diffusion and functional parameters. NMR
Biomed 32(1):e4026. https://doi.org/10.1002/nbm.4026

10. Li X, Priest RA, Woodward WJ, Tagge IJ, Siddiqui F, Huang W,
Rooney WD, Beer TM, Garzotto MG, Springer CS (2013)
Feasibility of shutter-speed DCE-MRI for improved prostate cancer
detection. Magn Reson Med 69(1):171–178

11. Jajamovich GH, Huang W, Besa C, Li X, Afzal A, Dyvorne HA,
Taouli B (2016) DCE-MRI of hepatocellular carcinoma: perfusion
quantification with Tofts model versus shutter-speed model—initial
experience. MAGMA 29(1):49–58

12. Lee SH, Hayano K, Zhu AX, Sahani DV, Yoshida H (2015) Water-
exchange-modified kinetic parameters from dynamic contrast-
enhanced MRI as prognostic biomarkers of survival in advanced
hepatocellular carcinoma treated with antiangiogenic monotherapy.
PLoS One 10(9):e0136725

13. Li X, Rooney WD, Springer CS Jr (2005) A unified magnetic
resonance imaging pharmacokinetic theory: intravascular and ex-
tracellular contrast reagents. Magn Reson Med 54(6):1351–1359.
https://doi.org/10.1002/mrm.20684

14. Roberts HC, Roberts TP, Brasch RC, Dillon WP (2000)
Quantitative measurement of microvascular permeability in human
brain tumors achieved using dynamic contrast-enhanced MR im-
aging: correlation with histologic grade. Am J Neuroradiol 21(5):
891–899

15. Liang J, Liu D, Gao P, Zhang D, Chen H, Shi C, Luo L (2018)
Diagnostic values of DCE-MRI and DSC-MRI for differentiation
between high-grade and low-grade gliomas: a comprehensivemeta-
analysis. Acad Radiol 25(3):338–348

16. Kim H (2018) Variability in quantitative DCE-MRI: sources and
solutions. J Nat Sci 4(1)

17. Guo Y, Zhu Y, Goud LS, Lebel RM, Shiroishi M (2015) High-
resolution whole-brain dynamic contrast-enhanced MRI using
compressed sensing. In: Biomedical optics & medical imaging.
SPIE Newsroom, Bellingham

18. Fahlstrom M, Fransson S, Blomquist E, Nyholm T, Larsson EM
(2018) Dynamic contrast-enhanced magnetic resonance imaging
may act as a biomarker for vascular damage in normal appearing
brain tissue after radiotherapy in patients with glioblastoma. Acta
Radiol Open 7(11). https://doi.org/10.1177/2058460118808811

19. Little RA, Barjat H, Hare JI, Jenner M, Watson Y, Cheung S,
Holliday K, Zhang W, O'Connor JPB, Barry ST, Puri S, Parker
GJM, Waterton JC (2018) Evaluation of dynamic contrast-
enhanced MRI biomarkers for stratified cancer medicine: how do
permeability and perfusion vary between human tumours? Magn
Reson Imaging 46:98–105. https://doi.org/10.1016/j.mri.2017.11.
008

20. Jiang JS, Hua Y, Zhou XJ, Shen DD, Shi JL, Ge M, Geng QN, Jia
ZZ (2018) Quantitative assessment of tumor cell proliferation in
brain gliomas with dynamic contrast-enhanced MRI. Acad
Radiol. https://doi.org/10.1016/j.acra.2018.10.012

21. Yuan J, Chow SK, Yeung DK, Ahuja AT, King AD (2012)
Quantitative evaluation of dual-flip-angle T1 mapping on DCE-
MRI kinetic parameter estimation in head and neck. Quant
Imaging Med Surg 2(4):245–253. https://doi.org/10.3978/j.issn.
2223-4292.2012.11.04

22. Liberman G, Louzoun Y, Ben Bashat D (2014) T(1) mapping using
variable flip angle SPGR data with flip angle correction. J Magn
Reson Imaging 40(1):171–180. https://doi.org/10.1002/jmri.24373

23. Li KL, Zhu XP, Waterton J, Jackson A (2000) Improved 3D quan-
titative mapping of blood volume and endothelial permeability in
brain tumors. J Magn Reson Imaging 12(2):347–357

24. Tofts PS, Kermode AG (1991) Measurement of the blood-brain
barrier permeability and leakage space using dynamicMR imaging.
1. Fundamental concepts. Magn Reson Med 17(2):357–367

25. Kety SS (1965) Observations on the validity of a two compartmen-
tal model of the cerebral circulation. Acta Neurol Scand Suppl 14:
85–87

26. Lagarias JC, Reeds JA, Wright MH, Wright PE (1998)
Convergence properties of the Nelder–Mead simplex method in
low dimensions. SIAM J Optim 9(1):112–147

27. D’Errico J (2012) fminsearchbnd. 1.4.0.0 edn., MathWorks file
exchange. https://in.mathworks.com/matlabcentral/fileexchange/
8277-fminsearchbnd-fminsearchcon. Accessed 10 May 2019

28. Akaike H (1974) A new look at the statistical model identification.
IEEE Trans Autom Control 19(6):716–723

29. Yankeelov TE, Rooney WD, Li X, Springer CS Jr (2003) Variation
of the relaxographic “shutter-speed” for transcytolemmal water ex-
change affects the CR bolus-tracking curve shape. Magn Reson
Med 50(6):1151–1169. https://doi.org/10.1002/mrm.10624

30. Landis CS, Li X, Telang FW, Molina PE, Palyka I, Vetek G,
Springer CS Jr (1999) Equilibrium transcytolemmal water-
exchange kinetics in skeletal muscle in vivo. Magn Reson Med
42(3):467–478

31. Donahue KM, Burstein D, Manning WJ, Gray ML (1994) Studies
of Gd-DTPA relaxivity and proton exchange rates in tissue. Magn
Reson Med 32(1):66–76

32. Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp
MV, Larsson HB, Lee TY, Mayr NA, Parker GJ, Port RE, Taylor J,
Weisskoff RM (1999) Estimating kinetic parameters from dynamic
contrast-enhanced T(1)-weighted MRI of a diffusable tracer: stan-
dardized quantities and symbols. J Magn Reson Imaging 10(3):
223–232

33. Buckley DL (2002) Uncertainty in the analysis of tracer kinetics
using dynamic contrast-enhanced T1-weighted MRI. Magn Reson
Med 47(3):601–606

Neuroradiology

https://doi.org/10.1016/j.jocn.2011.08.030
https://doi.org/10.1016/j.jocn.2011.08.030
https://doi.org/10.1002/mrm.22335
https://doi.org/10.1002/mrm.22335
https://doi.org/10.1038/sj.bjc.6603515
https://doi.org/10.1038/sj.bjc.6603515
https://doi.org/10.1002/nbm.3294
https://doi.org/10.1016/j.jmr.2010.07.004
https://doi.org/10.1016/j.jmr.2010.07.004
https://doi.org/10.1002/nbm.4026
https://doi.org/10.1002/mrm.20684
https://doi.org/10.1177/2058460118808811
https://doi.org/10.1016/j.mri.2017.11.008
https://doi.org/10.1016/j.mri.2017.11.008
https://doi.org/10.1016/j.acra.2018.10.012
https://doi.org/10.3978/j.issn.2223-4292.2012.11.04
https://doi.org/10.3978/j.issn.2223-4292.2012.11.04
https://doi.org/10.1002/jmri.24373
https://in.mathworks.com/matlabcentral/fileexchange/8277-fminsearchbnd-fminsearchcon
https://in.mathworks.com/matlabcentral/fileexchange/8277-fminsearchbnd-fminsearchcon
https://doi.org/10.1002/mrm.10624


34. Rijpkema M, Kaanders JH, Joosten FB, van der Kogel AJ,
Heerschap A (2001) Method for quantitative mapping of dynamic
MRI contrast agent uptake in human tumors. J Magn Reson
Imaging 14(4):457–463

35. McRobbie DW, Moore EA, Graves MJ, Prince MR (2006) MRI
from picture to proton, 2nd edn. Cambridge University Press,
Cambridge

36. BergaminoM, Bonzano L, Levrero F, Mancardi G, Roccatagliata L
(2014) A review of technical aspects of T1-weighted dynamic
contrast-enhanced magnetic resonance imaging (DCE-MRI) in hu-
man brain tumors. Phys Med 30(6):635–643

37. Heye AK, Culling RD, HernándezMCV, ThrippletonMJ,Wardlaw
JM (2014) Assessment of blood–brain barrier disruption using dy-
namic contrast-enhanced MRI. A systematic review. NeuroImage
Clin 6:262–274

38. Quirk JD, Bretthorst GL, Duong TQ, Snyder AZ, Springer CS,
Ackerman JJ, Neil JJ (2003) Equilibrium water exchange between
the intra-and extracellular spaces of mammalian brain. Magn Reson
Med 50(3):493–499

39. Duan C, Kallehauge JF, Bretthorst GL, Tanderup K, Ackerman JJ,
Garbow JR (2017) Are complex DCE-MRI models supported by
clinical data? Magn Reson Med 77(3):1329–1339. https://doi.org/
10.1002/mrm.26189

40. Buckley DL (2018) Shutter-speed dynamic contrast-enhanced
MRI: is it fit for purpose? Magn Reson Med 81:976–988. https://
doi.org/10.1002/mrm.27456

Publisher’s note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Neuroradiology

https://doi.org/10.1002/mrm.26189
https://doi.org/10.1002/mrm.26189
https://doi.org/10.1002/mrm.27456
https://doi.org/10.1002/mrm.27456

	Reliability...
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Materials and methods
	Patient population
	DCE-MRI data acquisition
	DCE-MRI data analysis
	Tofts model (TM)
	Shutter speed model (SSM)
	Extended Tofts model (ETM)
	Extended shutter speed model (ESSM)
	No-effect model (NEM)

	Arterial input function (AIF)
	Model comparison
	Stability of pharmacokinetic parameters


	Results
	Model selection and parameter variability

	Discussion
	DCE-MRI models
	Model comparison and stability

	References


