8 research outputs found

    VOCs and PM listing of Eucalyptus globulus combustion in residential wood stoves

    Get PDF
    Pollutant residential emissions from wood stoves have significant impacts both on the environment and people's health. The above makes it essential to know the types of volatile organic compounds emitted during combustion and explore their relationship with particulate matter and greenhouse gas emissions. This paper studies and analyzes these emissions using Eucalyptus globulus as fuel varying its moisture levels. Emissions were determined using an adapted commercial stove. The concentration levels of volatile organic compounds and particulate matter increase with the moisture of wood. When analyzing volatile organic compounds, particulate matter, and O2 with the combustion stages of wood, it is found that their concentrations were higher in the ignition and the reload stage. The concentrations of CO2 and NOx were higher in the reload stage. Other chemical compounds, such as toluene, xylene, and benzene, were also found within the volatile organic compounds listing, which increased their concentration in the ignition and stable reload stages. However, in the quenching stage, they are not present. Finally, the dispersion of these molecules in the environment is evaluated, obtaining that if the atmospheric conditions are adverse, these molecules remain in the environment in direct contact with the people living in those places

    Analysis of the Maximum Efficiency and the Maximum Net Power as Objective Functions for Organic Rankine Cycles Optimization

    No full text
    Maximum efficiency and maximum net power output are some of the most important goals to reach the optimal conditions of organic Rankine cycles. This work compares two objective functions, the maximum efficiency function, β, and the maximum net power output function, ω. The van der Waals and PC-SAFT equations of state are used to calculate the qualitative and quantitative behavior, respectively. The analysis is performed for a set of eight working fluids, considering hydrocarbons and fourth-generation refrigerants. The results show that the two objective functions and the maximum entropy point are excellent references for describing the optimal organic Rankine cycle conditions. These references enable attaining a zone where the optimal operating conditions of an organic Rankine cycle can be found for any working fluid. This zone corresponds to a temperature range determined by the boiler outlet temperature obtained by the maximum efficiency function, maximum net power output function, and maximum entropy point. This zone is named the optimal temperature range of the boiler in this work

    Assessing Concentration Changes of Odorant Compounds in the Thermal-Mechanical Drying Phase of Sediment-Like Wastes from Olive Oil Extraction

    Get PDF
    In the industrial production of olive oil, both solid wastes and those produced from their incineration are a serious environmental problem since only 20% w/w of the fruit becomes oil and the rest is waste, mainly orujo and alperujo. A key aspect to transforming these wastes into an important source of energy such as pellets is to recognize the most appropriate time of the year for waste drying, with the objective of minimizing the environmental impact of the volatile compounds contained in the waste. In this work, the emissions produced during thermal-mechanical drying were studied throughout a period of six months of waste storage in which alperujo and orujo were stored in open containers under uncontrolled environmental conditions. The studied emissions were produced when both wastes were dried in a pilot rotary drying trommel at 450 °C to reduce their initial humidity of around 70⁻80% w/w to 10⁻15% w/w. Results indicated that when the storage time of the wastes in the uncontrolled environments increased, the emission of odorant compounds during drying also increased as a consequence of the biological and chemical processes occurring in the containers. The main odorant VOCs were quantified monthly for six months at the outlet of the drying trommel. It was determined that the drying of this type of waste could be carried out properly until the third month of storage. Afterwards, the concentration of most VOCs produced widely exceeded the odor thresholds of selected compounds

    Assessing concentration changes of odorant compounds in the thermal-mechanical drying phase of sediment-likewastes from olive oil extraction

    No full text
    In the industrial production of olive oil, both solid wastes and those produced from their incineration are a serious environmental problem since only 20% w/w of the fruit becomes oil and the rest is waste, mainly orujo and alperujo. A key aspect to transforming these wastes into an important source of energy such as pellets is to recognize the most appropriate time of the year for waste drying, with the objective of minimizing the environmental impact of the volatile compounds contained in the waste. In this work, the emissions produced during thermal-mechanical drying were studied throughout a period of six months of waste storage in which alperujo and orujo were stored in open containers under uncontrolled environmental conditions. The studied emissions were produced when both wastes were dried in a pilot rotary drying trommel at 450 °C to reduce their initial humidity of around 70-80% w/w to 10-15% w/w. Results indicated that when the storage time of the wastes in the uncontrolled environments increased, the emission of odorant compounds during drying also increased as a consequence of the biological and chemical processes occurring in the containers. The main odorant VOCs were quantified monthly for six months at the outlet of the drying trommel. It was determined that the drying of this type of waste could be carried out properly until the third month of storage. Afterwards, the concentration of most VOCs produced widely exceeded the odor thresholds of selected compounds

    Recovering Apple Agro-Industrial Waste for Bioethanol and Vinasse Joint Production: Screening the Potential of Chile

    No full text
    Bioethanol production has increased in demand as a replacement for conventional fuels. This work studies the use of apple pomace, which corresponds to 45% (w/w) of dehydrated apple production, as a reliable and inexpensive source for bioethanol production. Additionally, the vinasse obtained from the process as a byproduct is analyzed. Apple pomace has important properties for energy purposes, with high soluble sugar (6%–8%), organic compounds and low protein content. The carbohydrates were consumed in 99.3% in 144 h at a temperature of 30 °C and in a yeast Saccharomyces cerevisiae (YSC) concentration of 0.10 g/L. The bioethanol purity produced, 99.5% (v/v), was quantified by gas chromatography and calorific value (23.21 MJ/kg). This high purity, which fulfills the EN 15376, ASTM D 4806 Standard, allows its use as a fuel and oil additive. Moreover, it can be stated that vinasse obtained from alcohol distillation is a compound that has physicochemical values like other vinasses. Finally, Chile, as the most important exporting country of dehydrated apples in the world, has great potential to take advantage of the use of this raw material for bioethanol and vinasse production
    corecore