18 research outputs found
Intraspecific Variation in Nickel Tolerance and Hyperaccumulation among Serpentine and Limestone Populations of Odontarrhena serpyllifolia (Brassicaceae: Alysseae) from the Iberian Peninsula
Odontarrhena serpyllifolia (Desf.) Jord. & Fourr. (=Alyssum serpyllifolium Desf.) occurs in the Iberian Peninsula and adjacent areas on a variety of soils including both limestone and serpentine (ultramafic) substrates. Populations endemic to serpentine are known to hyperaccumulate nickel, and on account of this remarkable phenotype have, at times, been proposed for recognition as taxonomically distinct subspecies or even species. It remains unclear, however, to what extent variation in nickel hyperaccumulation within this taxon merely reflects differences in the substrate, or whether the different populations show local adaptation to their particular habitats. To help clarify the physiological basis of variation in nickel hyperaccumulation among these populations, 3 serpentine accessions and 3 limestone accessions were cultivated hydroponically under common-garden conditions incorporating a range of Ni concentrations, along with 2 closely related non-accumulator species, Clypeola jonthlaspi L. and Alyssum montanum L. As a group, serpentine accessions of O. serpyllifolia were able to tolerate Ni concentrations approximately 10-fold higher than limestone accessions, but a continuous spectrum of Ni tolerance was observed among populations, with the least tolerant serpentine accession not being significantly different from the most tolerant limestone accession. Serpentine accessions maintained relatively constant tissue concentrations of Ca, Mg, K, and Fe across the whole range of Ni exposures, whereas in the limestone accessions, these elements fluctuated widely in response to Ni toxicity. Hyperaccumulation of Ni, defined here as foliar Ni concentrations exceeding 1g kg−1 of dry biomass in plants not showing significant growth reduction, occurred in all accessions of O. serpyllifolia, but the higher Ni tolerance of serpentine accessions allowed them to hyperaccumulate more strongly. Of the reference species, C. jonthlaspi responded similarly to the limestone accessions of O. serpyllifolia, whereas A. montanum displayed by far the lowest degree of Ni tolerance and exhibited low foliar Ni concentrations, which only exceeded 1 g kg−1 in plants showing severe Ni toxicity. The continuous spectrum of physiological responses among these accessions does not lend support to segregation of the serpentine populations of O. serpyllifolia as distinct species. However, the pronounced differences in degrees of Ni tolerance, hyperaccumulation, and elemental homeostasis observed among these accessions under common-garden conditions argues for the existence of population-level adaptation to their local substrates
Genetic diversity and hybridization in the two species Inga ingoides and Inga edulis: potential applications for agroforestry in the Peruvian Amazon
Key message: Slash and burn practices affect tropical forests. Our results showed strong introgression between Inga ingoides and Inga edulis in the species contact area Interspecific hybridization could be sought to improve yield or tolerance to flooding and further increase the economic potential of the poorly drained Amazonian soils and minimize deforestation. Context: Inga species are important components of tropical American forests, as well as a local food source. Little is known about the genetic structure of these species; in particular the amount of introgression among species remains unknown. Aims: We assessed the degree of genetic divergence and introgression among populations of I. ingoides (Rich.) Willd. and I. edulis Mart. (Fabaceae) from three Peruvian Amazon tributary rivers. Methods: Using microsatellite markers we determined the genetic structure of populations using an analysis ofmolecular variance and a Bayesian analysis of population structure in areas affected by seasonal river fluctuations and in ‘terra firme’ forests. Results: Overall genetic differentiation was weak. The degree of genetic variation was similar in the two species. A putatively strong introgression was detected between the two species and an intense gene flow was identified among populations. This indicates that an intense gene flow had happened in the past, leading also to a small differentiation among populations within species. Conclusion: Selection of natural hybrids or artificial hybridization between I. edulis and I. ingoides could be applied to improve legume size and yield in the later species, while maintaining tolerance to flooding. Improved I. ingoides could be used in multipurpose agroforestry on open areas along the rivers, instead of using the usual slash and burn practice to create inland open areas
Improving Ni-agromining with Mediterranean hyperaccumulators: the role of fertilisation and co-cropping with legumes
International audienceNi-hyperaccumulators are ideal candidates for agromining on ultramafic Ni-rich soils where other technologies for metal recovery are economically unviable. However, agronomic practices can be optimised in order to fully develop agromining at a large scale. Nitrogen (N) supply is a relevant factor, since it is generally a limiting nutrient, and especially in ultramafic soils. A pot experiment using ultramafic soil was carried out to improve the performance of agromining by the hyperaccumulators Odontarrhena serpyllifolia and Bornmuellera emarginata (Brassicaceae). Six different treatments, providing different N sources, were established for each hyperaccumulator: control monoculture, monoculture with mineral N fertilisation (2*40 kg ha-1), monoculture with 2% manure addition and co-culture with 3 different nodulating leguminous species (Anthyllis vulneraria, Lotus corniculatus –both native to ultramafic areas- and the commercial cultivar Vicia sativa cv. Prontivesa). The effects of the six treatments on Ni agromining efficiency of both hyperaccumulators were assessed from different perspectives: soil physico-chemical and biological properties, plant (shoot and root) biomass and nutritive status, plant δ15N isotopic signatures, and shoot Ni concentration and Ni yield after 5 months growth. Fertilisation with manure had a strong impact on plant biomass of both hyperaccumulators and resulted in a significant increase in Ni yield (maximum values of 90 mg Ni plant-1 for B. emarginata). Increased plant biomass due to manure application also influenced other soil parameters (such as DTPA-extractable [Ni] or soil urease and arylsulphatase activities). Co-culture with leguminous species increased the shoot Ni concentration of both hyperaccumulators. However, a significant increase in Ni yield was only obtained for B. emarginata when co-cultured with A. vulneraria. Mineral fertilisation and co-culture with Vicia sativa improved root and shoot N concentration of both hyperaccumulators. These two treatments also led to increased N assimilation at the shoot level (as indicated by an increased δ15N signature between shoots and roots). Hyperaccumulators in manure treatment presented the maximum δ15N per plant. The abundance of soil microbial communities involved in N-cycling varied between treatments and species, pointing out to possible competitive effects between plants and soil microorganisms for nutrients. Bornmuellera emarginata is a promising species for Ni-agromining. Breeding for increased biomass and/or Ni concentration is needed in order to improve the use of Odontarrhena serpyllifolia for agromining in the Iberian Peninsula
Vermicomposting as a sustainable option for managing biomass of the invasive tree Acacia dealbata link
The tree Acacia dealbata is native to Australia but has become invasive in many parts of the world thanks to its N-fixing capacity and to the allelopathic compounds present in its biomass. We conducted a pilot-scale study to assess the potential conversion of A. dealbata biomass by vermicomposting via the earthworm Eisenia andrei. The flowering aerial A. dealbata biomass was shredded and placed in a vermireactor under greenhouse conditions for 56 days. The vermicomposted material was sampled every two weeks to analyse its biological and chemical parameters. The phytotoxicity of the fresh A. dealbata material and vermicompost was assessed via an ecotoxicological test with Lepidium sativum seeds. The activity of the earthworms caused strong modifications of the properties of the processed material: the electric conductivity, basal respiration, and organic matter content were reduced, whereas the concentrations of other elements such as N, P, or Zn increased. The earthworm biomass increased steadily until day 42 and then decreased, probably due to the depletion of labile organic matter during the initial stages of vermicomposting. The fresh A. dealbata material reduced the germination and radicle elongation of L. sativum, whereas vermicompost showed the same values as control. The produced vermicompost was an organic fertiliser rich in N and was not phytotoxic. Vermicomposting provides an opportunity to create a new value chain for the control of the invasive tree A. dealbata
The role of littoral cliffs in the niche delimitation on a microendemic plant facing climate change
Obligate coastline taxa generally occupy very limited areas, especially when there is a close affinity with a specific coast type. Climate change can be a meaningful threat for them, reducing suitable habitat or forcing migration events. Cistus ladanifer subsp. sulcatus is an endemic plant of Portugal, known to occur only in the top of its south-western coast’s prominent cliffs. In spite of being included in the annexes II and IV of the European Habitats Directive of Natura 2000 Network, this taxon is still understudied, especially regarding the effects of climate change on its distribution. To overcome such gap, Maxent was used to model the current distribution of C. ladanifer subsp. sulcatus and project its future distribution considering different General Circulation Models, periods (2050 and 2070) and Representation Concentration Pathways (4.5 and 8.5). The results suggested an extensive range contraction in the future, and extinction is a possible scenario. The proximity to littoral cliffs is crucial for this plant’s occurrence, but these formations are irregularly distributed along the coast, hindering range expansions, further inhibited by a small dispersal capacity. Cistus ladanifer subsp. sulcatus will probably remain confined to south-western Portugal in the future, where it will continue to face relevant threats like human activity, reinforcing the need for its conservation.info:eu-repo/semantics/publishedVersio
Big data help to define climate change challenges for the typical Mediterranean species Cistus ladanifer L
Climate change’s huge impact on Mediterranean species’ habitat suitability and spatial and temporal distribution in the coming decades is expected. The present work aimed to reconstruct rockrose (Cistus ladanifer L.) historical and future spatial distribution, a typically Mediterranean species with abundant occurrence in North Africa, Iberian Peninsula, and Southern France. The R ensemble modeling approach was made using the biomod2 package to assess changes in the spatial distribution of the species in the Last Interglacial (LIG), the Last Glacial Maximum (LGM), and the Middle Holocene (MH), in the present, and in the future (for the years 2050 and 2070), considering two Representative Concentration Pathways (RCP 4.5 and RCP 8.5). The current species potential distribution was modeled using 2,833 occurrences, six bioclimatic variables, and four algorithms, Generalized Linear Model (GLM), MaxEnt, Multivariate Adaptive Regression Splines (MARS), and Artificial Neural Networks (ANN). Two global climate models (GCMs), CCSM4 and MRI-CGCM3, were used to forecast past and future suitability. The potential area of occurrence of the species is equal to 15.8 and 14.1% of the study area for current and LIG conditions, while it decreased to 3.8% in the LGM. The species’ presence diaminished more than half in the RCP 4.5 (to 6.8% in 2050 and 7% in 2070), and a too low figure (2.2%) in the worst-case scenario (RCP 8.5) for 2070. The results suggested that the current climatic conditions are the most suitable for the species’ occurrence and that future changes in environmental conditions may lead to the loss of suitable habitats, especially in the worst-case scenario. The information unfolded by this study will help to understand future predictable desertification in the Mediterranean region and to help policymakers to implement possible measures for biodiversity maintenance and desertification avoidance.info:eu-repo/semantics/publishedVersio
Plant functional traits on tropical ultramafic habitats affected by fire and mining: Insights for reclamation
Biodiversity-rich tropical ultramafic areas are currently being impacted by land clearing and particularly by mine activities. The reclamation of ultramafic degraded areas requires a knowledge of pioneer plant species. The objective of this study is to highlight the functional traits of plants that colonize ultramafic areas after disturbance by fire or mining activities. This information will allow trait-assisted selection of candidate species for reclamation. Fifteen plots were established on ultramafic soils in Sabah (Borneo, Malaysia) disturbed by recurrent fires (FIRE plots) or by soil excavation and quarrying (MINE plots). In each plot, soil samples were collected and plant cover as well as species abundances were estimated. Fifteen functional traits related to revegetation, nutrient improvement, or Ni phytomining were measured in sampled plants. Vegetation of both FIRE and MINE plots was dominated by perennials with lateral spreading capacity (mainly by rhizomes). Plant communities displayed a conservative growth strategy, which is an adaptation to low nutrient availability on ultramafic soils. Plant height was higher in FIRE than in MINE plots, whereas the number of stems per plant was higher in MINE plots. Perennial plants with lateral spreading capacity and a conservative growth strategy would be the first choice for the reclamation of ultramafic degraded areas. Additional notes for increasing nutrient cycling, managing competition, and implementing of Ni-phytomining are also provided
Neglected Mediterranean plant species are valuable resources: the example of Cistus ladanifer
Main conclusion: The combination of genotypic selection, targeted and improved cultivation, and processing techniques for specific applications gives C. ladanifer the potential to be used as a valuable resource in Mediterranean areas with poor agronomic advantages.
Cistus ladanifer (rockrose) is a perennial shrub, well adapted to the Mediterranean climate and possibly to upcoming environmental changes. As a sequence to a thorough review on taxonomic, morphological, chemical and competitive aspects of C. ladanifer, the research team focuses here on the economic potential of C. ladanifer: from production to applications, highlighting also known biological activities of extracts and their compounds. The use of this natural resource may be a viable solution for poor and contaminated soils with no need for large agricultural techniques, because this species is highly resistant to pests, diseases and extreme environmental factors. In addition, this species reveals interesting aptitudes that can be applied to food, pharmaceutical, phytochemical and biofuel industries. The final synthesis highlights research lines toward the exploitation of this neglected resource, such as selection of plant lines for specific applications and development of agronomic and processing techniques.info:eu-repo/semantics/publishedVersio