4,423 research outputs found

    Light to Mass Variations with Environment

    Full text link
    Large and well defined variations exist between the distribution of mass and the light of stars on extragalactic scales. Mass concentrations in the range 10^12 - 10^13 M_sun manifest the most light per unit mass. Group halos in this range are typically the hosts of spiral and irregular galaxies with ongoing star formation. On average M/L_B ~ 90 M_sun/L_sun in these groups . More massive halos have less light per unit mass. Within a given mass range, halos that are dynamically old as measured by crossing times and galaxy morphologies have distinctly less light per unit mass. At the other end of the mass spectrum, below 10^12 M_sun, there is a cutoff in the manifestation of light. Group halos in the range 10^11 - 10^12 M_sun can host dwarf galaxies but with such low luminosities that M/L_B values can range from several hundred to several thousand. It is suspected that there must be completely dark halos at lower masses. Given the form of the halo mass function, it is the low relative luminosities of the high mass halos that has the greatest cosmological implications. Of order half the clustered mass may reside in halos with greater than 10^14 M_sun. By contrast, only 5-10% of clustered mass would lie in entities with less than 10^12 M_sun.Comment: 15 pages, 9 figures, 2 tables, Accepted Astrophysical Journal 619, 000, 2005 (Jan 1

    Climate Modeling of a Potential ExoVenus

    Get PDF
    The planetary mass and radius sensitivity of exoplanet discovery capabilities has reached into the terrestrial regime. The focus of such investigations is to search within the Habitable Zone where a modern Earth-like atmosphere may be a viable comparison. However, the detection bias of the transit and radial velocity methods lies close to the host star where the received flux at the planet may push the atmosphere into a runaway greenhouse state. One such exoplanet discovery, Kepler-1649b, receives a similar flux from its star as modern Venus does from the Sun, and so was categorized as a possible exoVenus. Here we discuss the planetary parameters of Kepler-1649b with relation to Venus to establish its potential as a Venus analog. We utilize the general circulation model ROCKE-3D to simulate the evolution of the surface temperature of Kepler-1649b under various assumptions, including relative atmospheric abundances. We show that in all our simulations the atmospheric model rapidly diverges from temperate surface conditions towards a runaway greenhouse with rapidly escalating surface temperatures. We calculate transmission spectra for the evolved atmosphere and discuss these spectra within the context of the James Webb Space Telescope (JWST) Near-Infrared Spectrograph (NIRSpec) capabilities. We thus demonstrate the detectability of the key atmospheric signatures of possible runaway greenhouse transition states and outline the future prospects of characterizing potential Venus analogs.Comment: 11 pages, 4 figures, 1 table, accepted for publication in the Astrophysical Journal. The data from this paper are open source and are available from the following data portals: https://portal.nccs.nasa.gov/GISS_modelE/ROCKE-3D/Climate_Modeling_of_a_Potential_ExoVenus https://archive.org/details/Climate_Modeling_of_a_Potential_ExoVenu

    Oración fúnebre que en la solemne función cívico religiosa, celebrada... pronunció el presbítero Eugenio Paños y Quintana y la dedica á dicha ilustrísima corporación

    Get PDF
    Copia digital. Valladolid : Junta de Castilla y León. Consejería de Cultura y Turismo, 2009-201

    Climate Modeling of a Potential Exovenus

    Get PDF
    The planetary mass and radius sensitivity of exoplanet discovery capabilities has reached into the terrestrial regime. The focus of such investigations is to search within the Habitable Zone where a modern Earth-like atmosphere may be a viable comparison. However, the detection bias of the transit and radial velocity methods lies close to the host star where the received flux at the planet may push the atmosphere into a runaway greenhouse state. One such exoplanet discovery, Kepler-1649b, receives a similar flux from its star as modern Venus does from the Sun, and so was categorized as a possible exoVenus. Here we discuss the planetary parameters of Kepler-1649b in relation to Venus to establish its potential as a Venus analog. We utilize the general circulation model ROCKE-3D to simulate the evolution of the surface temperature of Kepler-1649b under various assumptions, including relative atmospheric abundances. We show that in all our simulations the atmospheric model rapidly diverges from temperate surface conditions toward a runaway greenhouse with rapidly escalating surface temperatures. We calculate transmission spectra for the evolved atmosphere and discuss these spectra within the context of the James Webb Space Telescope Near-Infrared Spectrograph capabilities. We thus demonstrate the detectability of the key atmospheric signatures of possible runaway greenhouse transition states and outline the future prospects of characterizing potential Venus analogs

    Fractura de piso orbitario en un jugador de béisbol

    Full text link
    Presentamos un caso de un paciente, jugador de béisbol que sufrió una fractura de piso orbitario al recibir un golpe directo (blowout) con un bate que se le escapó a otro jugador, esta fractura fue reparada con un bloque de Hidroxiapatita Porosa HAP -200 .Una vez reconstruido el defecto óseo, el paciente volvió a su vida normal y comenzó de nuevo a jugar béisbol, debido a que desaparecieron la diplopía y el enoftalmo, por lo que tuvo una completa rehabilitación estética y funcional. En los exámenes radiográficos postoperatorios se observó una excelente reconstrucción del piso de la orbita y una osteointegegración del material implantológicoWe attend one patient, baseball player that suffer floor orbital fracture when he received hit in his eye (blowout) during practice baseball. He was operating and repaired this fracture with Porous Hidroxyapatite HAP-200.After operation he returned to play baseball because disappear the signs and symptoms (diplopia and enophthalmo).The radiography study showed excellent result after one yea

    Functional immunomics: Microarray analysis of IgG autoantibody repertoires predicts the future response of NOD mice to an inducer of accelerated diabetes

    Full text link
    One's present repertoire of antibodies encodes the history of one's past immunological experience. Can the present autoantibody repertoire be consulted to predict resistance or susceptibility to the future development of an autoimmune disease? Here we developed an antigen microarray chip and used bioinformatic analysis to study a model of type 1 diabetes developing in non-obese diabetic (NOD) male mice in which the disease was accelerated and synchronized by exposing the mice to cyclophosphamide at 4 weeks of age. We obtained sera from 19 individual mice, treated the mice to induce cyclophosphamide-accelerated diabetes (CAD), and found, as expected, that 9 mice became severely diabetic while 10 mice permanently resisted diabetes. We again obtained serum from each mouse afterCAD induction. We then analyzed the patterns of antibodies in the individualmice to 266 different antigens spotted on the antigen chip. We identified a select panel of 27 different antigens (10% of the array) that revealed a pattern of IgG antibody reactivity in the pre-CAD serathat discriminated between the mice resistant or susceptible to CAD with 100% sensitivity and 82% specificity (p=0.017). Surprisingly, the set of IgG antibodies that was informative before CAD induction did not separate the resistant and susceptible groups after the onset of CAD; new antigens became criticalfor post-CAD repertoire discrimination. Thus, at least for a model disease, present antibody repertoires can predict future disease; predictive and diagnostic repertoires can differ; and decisive information about immune system behavior can be mined by bioinformatic technology. Repertoires matter.Comment: See Advanced Publication on the PNAS website for final versio

    Climate Modeling of a Potential ExoVenus

    Get PDF
    The planetary mass and radius sensitivity of exoplanet discovery capabilities has reached into the terrestrial regime. The focus of such investigations is to search within the Habitable Zone where a modern Earth-like atmosphere maybe a viable comparison. However, the detection bias of the transit and radial velocity methods lies close to the host star where the received flux at the planet may push the atmosphere into a runaway greenhouse state. One such exoplanet discovery, Kepler-1649b, receives a similar flux from its star as modern Venus does from the Sun, and so was categorized as a possible exoVenus. Here we discuss the planetary parameters of Kepler-1649b in relation to Venus to establish its potential as a Venus analog. We utilize the general circulation model ROCKE-3D (Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics) to simulate the evolution of the surface temperature of Kepler-1649b under various assumptions, including relative atmospheric abundances. We show that in all our simulations the atmospheric model rapidly diverges from temperate surface conditions toward a runaway greenhouse with rapidly escalating surface temperatures. We calculate transmission spectra for the evolved atmosphere and discuss these spectra within the context of the James Webb Space Telescope Near-Infrared Spectrograph capabilities. We thus demonstrate the detectability of the key atmospheric signatures of possible runaway greenhouse transition states and outline the future prospects of characterizing potential Venus analogs

    Constraints on Type Ia Supernova Models from X-ray Spectra of Galaxy Clusters

    Full text link
    We present constraints on theoretical models of Type Ia supernovae using spatially resolved ASCA X-ray spectroscopy of three galaxy clusters: Abell 496, Abell 2199 and Abell 3571. All three clusters have central iron abundance enhancements; an ensemble of abundance ratios are used to show that most of the iron in the central regions of the clusters comes from SN Ia. These observations are consistent with the suppressed galactic wind scenario proposed by Dupke and White (1999). At the center of each cluster, simultaneous analysis of spectra from all ASCA instruments shows that the nickel to iron abundance ratio (normalized by the solar ratio) is Ni/Fe ~ 4. We use the nickel to iron ratio as a discriminator between SN Ia explosion models: the Ni/Fe ratio of ejecta from the "Convective Deflagration" model W7 is consistent with the observations, while those of "delayed detonation" models are not consistent at the 90% confidence level.Comment: 20 pages, 2 figures, accepted by The Astrophysical Journa
    corecore