22 research outputs found

    Estimation of the neuromuscular fatigue threshold from an incremental cycling test using 1-minute exercise periods

    Get PDF
    The objectives of this study were: 1) to evaluate the method used for estimating the neuromuscular fatigue threshold from surface electromyographic amplitude (the PWCFT test) during a single incremental cycling workout using 1-minute exercise periods, and 2) to investigate the possible associations between PWCFT and metabolic (onset of blood lactate accumulation [OBLA]) and ventilatory (ventilatory threshold [VT] and respiratory compensation point [RCP]) variables.Sixteen cyclists performed incremental cycle ergometer rides to exhaustion with bipolar surface sEMG signals recorded from the vastus lateralis. Subsequently, participants performed one constant-workload exercise test at 100% of their PWCFT.During the incremental test, the power output at PWCFT was not correlated with that of OBLA (P>0.05), but it was positively correlated with those of VT and RCP (P0.05). The average duration of the constant-workload exercise was 8-9 minutes.The application of the PWCFT method using 1-min exercise periods could lead to overestimation of the neuromuscular fatigue threshold most likely because this stage duration allows insufficient time for the sEMG response to manifest

    Advanced Surface Treatments for Improving the Biocompatibility of Prosthesis and Medical Implants

    Get PDF
    During the last two decades, numerous surface treatments have been developed to improve the biocompatibility of different types of prosthesis and other medical implants. Some of these devices are subject to demanding loading and friction conditions (e.g., hip, knee, and spine prosthesis). However, for other implants, there are more specific requirements as it happens for coronary stents or pacemaker electrodes. The materials used for the manufacture of the aforementioned devices are subjected to very high restrictions in terms of biocompatibility, in particular on chemical composition, corrosion resistance, or ion release. As a consequence, most of prosthesis and other implants are made of a limited number of materials such as titanium alloys, stainless steels, cobalt-chromium alloys, UHMWPE, or PEEK. Unfortunately, from a strict point of view, none of these materials meet all the requirements that would be desirable in terms of durability and prevention of infections and inflammatory processes. Coatings and other surface treatments have been developed to solve these problems and to improve biocompatibility. In this chapter, we present an updated review of the most used surface engineering technologies for biomaterials, like novel PVD coatings, ion implantation, and other plasma spray treatments, as well as a critical review of the characterization techniques. This study is completed with an insight into the future of the field

    Optical design and development of a fiber coupled high-power diode laser system for laser transmission welding of plastics

    Get PDF
    Laser transmission welding (LTW) of thermoplastics is a direct bonding technique already used in different industrial applications sectors such as automobiles, microfluidics, electronics, and biomedicine. LTW evolves localized heating at the interface of two pieces of plastic to be joined. One of the plastic pieces needs to be optically transparent to the laser radiation whereas the other part has to be absorbent, being that the radiation produced by high power diode lasers is a good alternative for this process. As consequence, a tailored laser system has been designed and developed to obtain high quality weld seams with weld widths between 0.7 and 1.4 mm. The developed laser system consists of two diode laser bars (50 W per bar) coupled into an optical fiber using a nonimaging solution: equalization of the beam parameter product (BPP) in the slow and fast axes by a pair of step-mirrors. The power scaling was carried out by means of a multiplexing polarization technique. The analysis of energy balance and beam quality was performed considering ray tracing simulation (ZEMAX®) and experimental validation. The welding experiments were conducted on acrylonitrile/butadiene/styrene (ABS), a thermoplastic frequently used in automotive, electronics and aircraft applications, doped with two different concentrations of carbon nanotubes (0.01% and 0.05% CNTs). Quality of the weld seams on ABS was analyzed in terms of the process parameters (welding speed, laser power and clamping pressure) by visual and optical microscope inspections. Mechanical properties of weld seams were analyzed by mechanical shear tests. High quality weld seams were produced in ABS, revealing the potential of the laser developed in this work for a wide range of plastic welding applications

    Effect of Post-Processing Treatment on Fatigue Performance of Ti6Al4V Alloy Manufactured by Laser Powder Bed Fusion

    Get PDF
    Fatigue properties of parts are of particular concern for safety-critical structures. It is well-known that discontinuities in shape or non-uniformities in materials are frequently a potential nucleus of fatigue failure. This is especially crucial for the Ti6Al4V alloy, which presents high susceptibility to the notch effect. This study investigates how post-processing treatments affect the mechanical performance of Ti6Al4V samples manufactured by laser powder bed fusion technology. All the fatigue samples were subjected to a HIP cycle and post-processed by machining and using combinations of alternative mechanical and electrochemical surface treatments. The relationship between surface properties such as roughness, topography and residual stresses with fatigue performance was assessed. Compressive residual stresses were introduced in all surface-treated samples, and after tribofinishing, roughness was reduced to 0.31 ± 0.10 µm, which was found to be the most critical factor. Fractures occurred on the surface as HIP removed critical internal defects. The irregularities found in the form of cavities or pits were stress concentrators that initiated cracks. It was concluded that machined surfaces presented a fatigue behavior comparable to wrought material, offering a fatigue limit superior to 450 MPa. Additionally, alternative surface treatments showed a fatigue behavior equivalent to the casting material.This research was funded by the Departamento de Desarrollo Económico, Sostenibilidad y Medio Ambiente of the Basque Government (ELKARTEK 2022 KK-2022/00070), by the Departamento de Desarrollo Económico y Competitividad of the Basque Government (ELKARTEK 2019 KK-2019/00077) and by the European Union (project TIFAN, JTI-CS-2013-1-ECO-01-066)

    Design of Nanostructured Functional Coatings by Using Wet-Chemistry Methods

    No full text
    This review reports the implementation of novel nanostructured functional coatings by using different surface engineering techniques based on wet chemistry. In the first section, the theoretical fundaments of three techniques such as sol-gel process, layer-by-layer (LbL) assembly and electrospinning will be briefly described. In the second section, selected applications in different potential fields will be presented gathering relevant properties such as superhydrophobicity, biocide behavior or applications in the field of optical fiber sensors

    Laser Surface Microstructuring of a Bio-Resorbable Polymer to Anchor Stem Cells, Control Adipocyte Morphology, and Promote Osteogenesis

    No full text
    New strategies in regenerative medicine include the implantation of stem cells cultured in bio-resorbable polymeric scaffolds to restore the tissue function and be absorbed by the body after wound healing. This requires the development of appropriate micro-technologies for manufacturing of functional scaffolds with controlled surface properties to induce a specific cell behavior. The present report focuses on the effect of substrate topography on the behavior of human mesenchymal stem cells (MSCs) before and after co-differentiation into adipocytes and osteoblasts. Picosecond laser micromachining technology (PLM) was applied on poly (L-lactide) (PLLA), to generate different microstructures (microgrooves and microcavities) for investigating cell shape, orientation, and MSCs co-differentiation. Under certain surface topographical conditions, MSCs modify their shape to anchor at specific groove locations. Upon MSCs differentiation, adipocytes respond to changes in substrate height and depth by adapting the intracellular distribution of their lipid vacuoles to the imposed physical constraints. In addition, topography alone seems to produce a modest, but significant, increase of stem cell differentiation to osteoblasts. These findings show that PLM can be applied as a high-efficient technology to directly and precisely manufacture 3D microstructures that guide cell shape, control adipocyte morphology, and induce osteogenesis without the need of specific biochemical functionalization

    Evaluation of the Electromyography Test for the Analysis of the Aerobic-Anaerobic Transition in Elite Cyclists during Incremental Exercise

    Get PDF
    (1) Background: The aim of this study was to investigate the validity and reliability of surface electromyography (EMG) for automatic detection of the aerobic and anaerobic thresholds during an incremental continuous cycling test using 1 min exercise periods in elite cyclists. (2) Methods: Sixteen well-trained cyclists completed an incremental exercise test (25 W/1 min) to exhaustion. Surface bipolar EMG signals were recorded from the vastus lateralis, vastus medialis, biceps femoris, and gluteus maximus, and the root mean square (RMS) were assessed. The multi-segment linear regression method was used to calculate the first and second EMG thresholds (EMGT1 and EMGT2). During the test, gas exchange data were collected to determine the first and second ventilatory thresholds (VT1 and VT2). (3) Results: Two breakpoints (thresholds) were identified in the RMS EMG vs. time curve for all muscles in 75% of participants. The two breakpoints, EMGT1 and EMGT2, were detected at around 70%⁻80% and 90%⁻95% of VO2MAX, respectively. No significant differences were found between the means of VT1 and EMGT1 for the vastii and biceps femoris muscles (p > 0.05). There were no significant differences between means of EMGT2 and VT2 (p > 0.05). (4) Conclusions: It is concluded that the multi-segment linear regression algorithm is a valid non-invasive method for analyzing the aerobic-anaerobic transition during incremental tests with 1 min stage durations

    High Throughput Manufacturing of Bio-Resorbable Micro-Porous Scaffolds Made of Poly(L-lactide-co-ε-caprolactone) by Micro-Extrusion for Soft Tissue Engineering Applications

    No full text
    Porous scaffolds made of elastomeric materials are of great interest for soft tissue engineering. Poly(L-lactide-co-ε-caprolactone) (PLCL) is a bio-resorbable elastomeric copolymer with tailorable properties, which make this material an appropriate candidate to be used as scaffold for vascular, tendon, and nerve healing applications. Here, extrusion was applied to produce porous scaffolds of PLCL, using NaCl particles as a leachable agent. The effects of the particle proportion and size on leaching performance, dimensional stability, mechanical properties, and ageing of the scaffolds were analyzed. The efficiency of the particle leaching and scaffold swelling when wet were observed to be dependent on the porogenerator proportion, while the secant moduli and ultimate tensile strengths were dependent on the pore size. Porosity, swelling, and mechanical properties of the extruded scaffolds were tailorable, varying with the proportion and size of porogenerator particles and showed similar values to human soft tissues like nerves and veins (E = 7–15 MPa, σu = 7 MPa). Up to 300-mm length micro-porous PLCL tube with 400-µm thickness wall was extruded, proving extrusion as a high-throughput manufacturing process to produce tubular elastomeric bio-resorbable porous scaffolds of unrestricted length with tunable mechanical properties
    corecore