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Featured Application: Determination of neuromuscular fatigue threshold in elite cyclists during
an incremental test.

Abstract: (1) Background: The aim of this study was to investigate the validity and reliability of surface
electromyography (EMG) for automatic detection of the aerobic and anaerobic thresholds during an
incremental continuous cycling test using 1 min exercise periods in elite cyclists. (2) Methods: Sixteen
well-trained cyclists completed an incremental exercise test (25 W/1 min) to exhaustion. Surface bipolar
EMG signals were recorded from the vastus lateralis, vastus medialis, biceps femoris, and gluteus
maximus, and the root mean square (RMS) were assessed. The multi-segment linear regression method
was used to calculate the first and second EMG thresholds (EMGT1 and EMGT2). During the test,
gas exchange data were collected to determine the first and second ventilatory thresholds (VT1 and VT2).
(3) Results: Two breakpoints (thresholds) were identified in the RMS EMG vs. time curve for all muscles
in 75% of participants. The two breakpoints, EMGT1 and EMGT2, were detected at around 70%–80% and
90%–95% of VO2MAX, respectively. No significant differences were found between the means of VT1

and EMGT1 for the vastii and biceps femoris muscles (p > 0.05). There were no significant differences
between means of EMGT2 and VT2 (p > 0.05). (4) Conclusions: It is concluded that the multi-segment
linear regression algorithm is a valid non-invasive method for analyzing the aerobic-anaerobic transition
during incremental tests with 1 min stage durations.

Keywords: cycling; neuromuscular fatigue; surface electromyography; Incremental cycling ergometer test

1. Introduction

In recent decades, great effort has aimed at identifying the threshold that delineates the
aerobic-anaerobic transition during an incremental workout on a cycle ergometer [1,2]. Such “fatigue
threshold” has been calculated on the basis of metabolic, ventilatory, and surface electromyographic
(EMG) variables. In particular, EMG-based thresholds are especially attractive because they can be
used to characterize neuromuscular fatigue and can be assessed non-invasively [3]. In the time domain,
the increase in neuromuscular fatigue during an incremental continuous exercise is manifested by
an increase in EMG amplitude as a result of recruitment of additional motor units, increased firing
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rates, and/or synchronization [4]. Thus, EMG thresholds can be determined by examining the changes
in the profile of the EMG amplitude during the test. EMG thresholds, however, have important
limitations since the amplitude of the EMG signal is affected by many confounding factors [4], including
(1) electrode location; (2) thickness of the subcutaneous tissues; (3) the detection system used to obtain
the recording; (4) changes in the transmembrane action potential; (5) cross-talk from nearby muscles;
and (6) signal cancellation. Due to all these confounding factors, caution is needed when using the
EMG amplitude as an index of the level of muscle activation.

One of the most common approaches to determine the EMG threshold is based on analyzing
the increase in EMG amplitude throughout the whole duration of the incremental test by searching
for breakpoints in the linearity of the EMG amplitude vs. time curve. The studies falling in this
category vary in the number of breakpoints identified: Zero, one, or two [5]. Among all the factors
influencing the identification of EMG breakpoints (for a review of the factors, see Ertl et al. 2016 [5]),
the mathematical algorithm utilized is one of the most critical. Remarkably, only the algorithm
proposed by Lucía et al. [6] was able to identify two EMG breakpoints in the EMG amplitude
vs. time curve: The other automatic methods only identified the first breakpoint [7–9]. However,
various studies that analyzed the EMG curve by visual analysis have confirmed the existence of two
breakpoints [10–12]. Therefore, it would be interesting to test the algorithm proposed by Lucía et al. [6]
using different configurations of the incremental cycling protocol (i.e., pedal cadence, the stage
duration, the workload increment, etc.) to investigate the applicability and reliability of this method to
find the first and second EMG thresholds.

The multi-segment linear regression method proposed by Lucía et al. [6] was originally
implemented in an incremental test where power output was increased by 5 W every 12 s. The short
stage duration of this test makes it more similar to a ramp-like protocol compared to the graded steady
state tests commonly used for EMG threshold detection. In the literature, there are graded steady tests
with stage durations of 1, 2, and 3 min, although those studies that included EMG measures commonly
selected 1 min step protocols [11,13,14]. More specifically, of the 27 studies analyzed in the review
of Ertl et al. [5], 14 increased their workload every minute, two minute-protocols were used in five
studies, while only two studies included a three-minute protocol. Moreover, incremental protocols
including one-minute stages are recommended as the most appropriate ones for EMG threshold
detection [5]. In addition, metabolic and ventilatory thresholds are commonly determined using
incremental tests with one-minute stages [2,15–18]. Therefore, it is of interest to determine whether the
multi-segment linear regression method is able to determine two breakpoints in the EMG curve using
one-minute stages.

The objective of the present study was to investigate the validity and reliability of the
multi-segment linear regression method for EMG threshold detection during an incremental cycling
test of 60 s stages and compare the results with those obtained by Lucía et al. during the 12 s
stage test [6]. The development of muscle fatigue during the incremental tests with 12 s and 60 s
stage durations may be slightly different. Indeed, during the 12 s stage test, motor unit recruitment,
motor unit discharge rate, and/or the sensation of effort may evolve in a more progressive manner
to cope with the quick increases in workload. Based on this, we would expect some differences in
the detection of EMG thresholds and in the percentage of VO2MAX at which the EMG thresholds are
reached between the 12 s and 60 s stage protocols.

2. Materials and Methods

2.1. Participants

Sixteen well-trained male elite cyclists volunteered to participate in the study. Their mean
(±SD) anthropometric characteristics were: Age 21.7 ± 2.9 years, weight 71.3 ± 4.9 kg, and height
1.81 ± 0.06 cm. The study was conducted in accordance with the Declaration of Helsinki, and was
approved by the Ethics Committee of the Public University of Navarra. Written informed consent was
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obtained from all participants before inclusion. Participants were asked to not take part in vigorous
physical activity for two days prior to their test date.

The participants were road cyclists engaged in regular training and amateur road races.
On average, all cyclists trained at least four times a week covering a weekly distance ranging between
400 and 600 km, plus competition or Sunday training. Cyclists had a national competitive experience
of 4.3 (1.7) mean (SD) years and had ridden for an average of 20,000 km (range 16,000–24,000 km)
during the last season. None of the participants reported any injuries or pathologies of limb muscles
or joints.

2.2. Screening and Familiarization Session

Cyclists underwent a blood test (biochemical and hematological parameters) prior to participation
to check for anemia and possible infections. Participants were asked to attend an orientation session
to become familiarized with the testing apparatus and procedures. All tests were performed on
a custom-made cycle ergometer. The participants were required to bring in the saddle, pedals,
and cycling shoes from their normal road bicycle. The saddle and pedals were installed on the cycle
ergometer. A submaximal incremental test was then performed on the cycle ergometer to familiarize
the cyclists with the experimental protocol.

2.3. Maximal Cycle Ergometer Test

Participants performed an incremental test to exhaustion on a SRM powermeter (science SRM,
SRM GmbH, Germany). Pedal cadence was maintained at 70 rpm during the test, similar to that used
in previous studies [7,16,19]. Before the incremental exercise test started, cyclists performed 5 min of
unloaded cycling. The test was initiated at a workload of 125 W and the load was increased by 25 W
every 1 min [1] until exhaustion or until pedal cadence could not be kept at 70 rpm. For the validity
study, each of the 16 subjects performed a single bicycle ergometer test following the above protocol.
For the reliability study, 10 subjects performed two exercise tests on a bicycle ergometer on different
occasions and separated from each other by a period of no more than five days.

2.4. Analysis of Expired Gas and Determination of Ventilatory Thresholds

During the incremental exercise, breath-by-breath analysis was performed using a turbine
flow-meter connected to a face mask (dead space: 30 mL). A side pore of the facemask was
connected to fast-response differential paramagnetic oxygen and infrared carbon dioxide analyzers.
Throughout the incremental test, the software (Oxycon PRO, Carefusion, Germany) averaged every
five consecutive seconds data of oxygen uptake (VO2) and carbon dioxide production (VCO2) and
ventilatory parameters, as well as the ventilatory equivalents for oxygen (EqO2 = VE/VO2) and
carbon dioxide (EqCO2 = VE/VCO2). The first ventilatory threshold (VT1) corresponded to the power
output value at which VE/VO2 exhibited a systematic increase without a concomitant increase in
VE/VCO2 [20]. The second ventilatory threshold (VT2) corresponded to the minimal power output at
which the increase in VE/VO2 was accompanied by a parallel increase of VE/VCO2 [20].

2.5. Electromyography

Surface EMG signals were recorded using a pair of circular electrodes Ag/AgCl electrodes
(Kendall Meditrace 100, Tyco, Canada) arranged in bipolar configuration. The electrodes had a
recording diameter of 10 mm and were separated by a distance of 20 mm (measured from the nearest
lateral borders). The electrodes were placed on the dominant leg over the vastus lateralis (VL),
vastus medialis (VM), biceps femoris (BF), and gluteus maximus (GLM) according to the SENIAM
(Surface EMG for Non-Invasive Assessment of Muscles) guidelines [21]. Before electrode placement,
the skin was adequately prepared (light abrasion with sandpaper and cleansing with rubbing alcohol).
The electrodes and cables were secured with surgical tape and cloth wrap to avoid movement-induced
artifacts. Surface EMG signals were recorded using MP150 equipment (BIOPAC, Goleta, CA, USA).
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Raw EMG signals were amplified, filtered (band-pass 10–500 Hz) and digitized (sampling frequency
1000 Hz) using the analog-to-digital conversion system of MP150.

2.6. Data Analysis

Data were first analyzed with commercially-available software (AcqKnowledge, BIOPAC Systems,
Goleta, CA, USA) to monitor any abnormality in EMG traces. Then, data were exported to Matlab
(version R2012b; The Math-Works, Natick, MA, USA) for quantitative analysis using a number of
custom scripts. The root mean square voltage (RMS) was used as an index of the global EMG
amplitude [15]. For each muscle, the RMS EMG was calculated during the active period of the muscle
(EMG burst) of each pedal thrust (64-ms window). Then, the RMS-EMG was averaged every six crank
revolutions (corresponding to about 5 s for 70 rpm), as previously described [15].

2.7. Determination of EMG Thresholds

The multi-segment linear regression method was employed to establish whether one or two
breakpoints (thresholds) existed in the EMG amplitude response. All muscles were analyzed
independently. This method was implemented as described in the following steps:

1. The root mean square (RMS) amplitude of each pedal thrust was calculated and represented vs.
time (see the data points in Figure 1A).

2. A single-segment regression curve (a regression line) was fitted to all data points, and then the
residual sum of square (RSS) was calculated. The results of this linear regression were used for
later statistical analysis (see Figure 1B).

3. The best two-segment regression of the EMG data was computed. To do this, the algorithm
calculated all the possible two-segment regressions, and the two-segment regression yielding the
least pooled RSS was chosen as representing the best fit. It was observed that the intersection
point (breakpoint) between these two segments was very close to the maximum intensities
in all subjects. The intersection of both segments defined the instant when EMGT2 occurred.
An analysis of variance was conducted to determine whether the adjustment using two-segment
regression led to a significant (p < 0.05) reduction in the total sum of squares when compared to
the adjustment using a single-segment regression (see Figure 1C).

4. Finally, the best three-segment regression of the EMG data was computed in order to detect an
additional breakpoint in the EMG curve. The third middle segment was obtained by methodically
breaking the first (left) segment obtained in the previous step into two segments, and keeping the
regression that yielded the lower sum of squares (see Figure 1D). Finally, an analysis of variance
was conducted to determine whether the adjustment using three-segment regression led to a
significant (p < 0.05) reduction in the total sum of squares when compared to the adjustment
using two-segment regressions. The two points resulting from the intersection of the above three
segments determined the instants when the first (EMGT1) and second (EMGT2) EMG thresholds
occurred (see Figure 2).

2.8. Statistics

Kolmogorov-Smirnov tests confirmed that each parameter analyzed in the study (EMGT1,
EMGT2, VT1, and VT2) was normally distributed. For the validity study (16 subjects), one-way
repeated-measures ANOVA was used to determine whether there were significant differences between,
on the one hand, EMGT1 and VT1, and on the other hand, between EMGT2 and VT2, when these
variables were expressed in W, VO2 (ml/kg/min), and % VO2MAX. Pearson correlation (r) was used
to determine the possible relation between EMGT1 and VT1, as well as between EMGT2 and VT2.
To further analyze the validity of the EMG method, the Bland-Altman method was followed [22].
For this analysis, the mean differences (bias) and SD of the differences between the mean values (W)
obtained with the two methods (EMGT1 vs. VT1, and EMGT2 vs. VT2) were calculated. The mean
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difference plus or minus two SD is shown in Figure 3. In this way, the bias and precision of the EMG
technique could be calculated [6]. For the group of six subjects that performed the test on two different
days (reliability study), a paired Student’s t test was used to compare mean values of EMGT1 and
EMGT2 obtained with both tests. Intraclass Pearson’s correlation coefficients were also calculated
to determine the degree of correlation between mean values of EMGT1 and EMGT2 reported with
repeated tests. Significance was set at p < 0.05.
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Figure 1. Multi-regression method step by step, S represents the residual sum of squares (RSS).
(A) Original data, workload (gray line), and EMG amplitude for each epoch. (B) Best single-segment
regression. (C) Better two-segment regression. (D) Better 3-segment regression.
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Figure 2. A representative example of a surface electromyographic (EMG) recording of the vastus
lateralis obtained during the incremental test of one cyclist. Each data point represents the root mean
square of the EMG (RMS EMG), obtained at two-second intervals. The RMS EMG data were fitted with
three regression lines using the multi-segment linear regression method. The intersections between the
regression lines mark the breakpoints in the linearity of the curve, thus yielding the first (EMGT1) and
second (EMGT2) thresholds.
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3. Results

3.1. Physiological Values

Table 1 provides the physiological characteristics of the participants calculated from the
incremental test. As expected, well-trained cyclists reached high values of VO2 at the end of exercise:
71.6 ± 4.1 mL/kg/min (range 62.3–81.0). The maximal power output of 406 ± 36 W (range 325–450)
was also high. The duration of the test was 11.1 ± 1.3 min (range 8–13 min).

Table 1. Physiological (mean ± SD) characteristics of the participants (N = 16) calculated from the
incremental test.

Variables Mean (SD) Range

VT1 (L min−1) 3.3 ± 0.6 1.9–4.4
VT2 (L min−1) 4.6 ± 0.5 3.4–5.6

VO2MAX (ml Kg−1 min−1) 4.9 ± 0.7 4.5–5.7
VO2MAX (L min−1) 71.6 ± 4.1 62.3–81.0

Power at end of exercise (W) 406 ± 36 325–450

3.2. Time Course of EMG Amplitude during the Incremental Test

Figure 2 provides an example of an EMG response during the incremental exercise of one cyclist.
As can be seen, three regression lines with different slopes were fitted to the data points, which allows
for identification of two breakpoints in the linearity of the RMS EMG curve. This two-EMG-threshold
pattern was observed in 75% of subjects for all muscles investigated, with EMGT1 and EMGT2 occurring,
respectively, around 70%–80% and 90%–95% of VO2MAX.

The second threshold, EMGT2, was detected in all 16 subjects for all muscles. However, EMGT1

could not be detected in the VL, VM, and BF in 20%–25% of the cases, whereas it was identified in
the GLM for all subjects. It should be noted that EMGT1 was always detected in at least two of the
muscles tested.

3.3. Validity: Comparison between Ventilatory and Electromyography Thresholds

Table 2 summarizes the average values of VT1 and EMGT1 expressed in W, VO2 (ml/kg/min),
and %VO2MAX for all muscles. There were no significant differences between the means of EMGT1

and VT1 for the VL, VM, and BF muscles. However, for the GLM muscle, the means of EMGT1 were
significantly greater than those of VT1 (p < 0.05).

Table 2. Mean values of the power output (W), VO2, and %VO2MAX obtained at the first electromyographic
threshold (EMGT1) and at the first ventilatory threshold (VT1). All values are expressed as mean ± SD.

EMGT1

Variable VT1 Vastus Lateralis Vastus Medialis Biceps Femoris Gluteus Maximus

W 278.2 ± 34.5 291.1 ± 44.3 294.0 ± 46.9 295.6 ± 47.3 300.8 ± 37.9 *
VO2 (ml/kg/min) 51.5 ± 6.8 54.5 ± 6.9 55.7 ± 5.9 56.5 ± 8.0 57.8 ± 5.7 *

%VO2MAX 71.9 ± 9.4 76.1 ± 8.9 77.8 ± 9.5 78.9 ± 11.5 80.7 ± 6.1 *

* Significant difference between the mean values at EMGT1 and at VT1 (p < 0.05).

Table 3 summarizes the average values of VT2 and EMGT2 expressed in W, VO2 (ml/kg/min),
and %VO2MAX for all muscles. There was no significant differences between means of EMGT2 and
VT2 (p > 0.05) for four muscles.
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Table 3. Mean values of the power output (W), VO2, and %V obtained at the second electromyographic
threshold (EMGT2) and at the second ventilatory threshold (VT2). All values are expressed as mean ± SD.

EMGT2

Variable VT2 Vastus Lateralis Vastus Medialis Biceps Femoris Gluteus Maximus

W 383.5 ± 44.4 378.6 ± 24.5 372.2 ± 27.4 374.4 ± 31.6 379.8 ± 30.2
VO2 (mL/kg/min) 65.6 ± 4.5 66.9 ± 3.5 65.8 ± 3.8 66.9 ± 4.8 67.2 ± 4.7

%VO2MAX 91.6 ± 8.3 93.5 ± 6.0 91.9 ± 6.0 93.4 ± 5.2 93.8 ± 4.9

To further examine the validity of the EMG method, the Bland-Altman method was applied to
assess the degree of agreement between the EMG thresholds and ventilatory thresholds (see Figure 3).
This figure shows that, for all muscles, the bias and error of the multi-segment regression method was
relatively low. Note that the levels of agreement were especially low for the comparison between VT2
and EMGT2 (Figure 3b). Moreover, for all comparisons, at least 90% of the individual values were
within the limits of agreement.
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femoris (BF), and gluteus maximus (GLM).

3.4. Correlation between Ventilatory and Electromyography Thresholds

In all muscles, a significant correlation was found between the power outputs (W) at VT1 and
EMGT1 (Table 4). Likewise, for all muscles, there was a significant correlation between the power
outputs at VT2 and EMGT2 (Table 4).

Table 4. Correlations between the power output (W) obtained at the first electromyographic threshold
(EMGT1) and at the first ventilatory threshold (VT1), and between the power output obtained at the
second electromyographic threshold (EMGT2) and at the second ventilatory threshold (VT2).

EMGT1

Vastus Lateralis Vastus Medialis Biceps Femoris Gluteus Maximus

VT1 0.75 * 0.69 * 0.72 * 0.88 *

EMGT2

Vastus Lateralis Vastus Medialis Biceps Femoris Gluteus Maximus

VT2 0.90 * 0.82 * 0.82 * 0.83 *

* Significant correlation (p < 0.05).

3.5. Reliability

No significant differences were found between mean values of either EMGT1 or EMGT2 obtained
in the first and second tests (p < 0.05). Intraclass correlation coefficients (ICC) between repeated
measurements were significant (p < 0.05) and high (Table 5).
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Table 5. Reliability of measurements of the electromyographic thresholds EMGT1 and EMGT2.

Muscle Threshold First Test Second Test ICC

Vastus lateralis
EMGT1 (W) 289.2 ± 50.4 294.3 ± 47.8 0.85
EMGT2 (W) 375.2 ± 27.2 380.4 ± 31.6 0.87

Vastus medialis
EMGT1 (W) 291.2 ± 27.0 295.4 ± 31.5 0.93
EMGT2 (W) 370.2 ± 25.9 374.4 ± 30.1 0.89

Biceps femoris EMGT1 (W) 293.2 ± 27.7 297.4 ± 31.5 0.93
EMGT2 (W) 371.2 ± 29.9 376.4 ± 28.1 0.86

Gluteus maximus
EMGT1 (W) 298.2 ± 27.9 302.4 ± 31.2 0.96
EMGT2 (W) 377.2 ± 28.3 381.4 ± 27.7 0.91

4. Discussion

The main findings of our study were the following: (1) the multi-segment linear regression method
was able to detect two breakpoints (thresholds) in the RMS EMG vs. time curve from all muscles
in 75% of participants during an incremental cycling test of 60 s stages; (2) the two breakpoints,
EMGT1 and EMGT2, were detected at around 70%–80% and 90%–95% of VO2MAX, respectively;
and (3) the two EMG breakpoints, EMGT1 and EMGT2, occurred at similar power outputs than VT1

and VT2, respectively.

4.1. Possible Mechanisms for the Non-Linear Increases in EMG Amplitude

Most studies on cycling performance attribute the occurrence of breakpoints in the linearity
of the EMG curve to the recruitment of additional motor units and/or to the change in the type of
motor units recruited [5]. However, to date, the mechanisms underlying the abrupt increases in EMG
amplitude during an incremental test are not entirely clear, and could involve both local and central
(global) factors.

At the local (muscle) level, it has been shown that as fatigue develops, there is a progressive
accumulation of metabolic byproducts of muscular contraction (i.e., lactate, hydrogen ions, potassium,
and inorganic phosphate), which could result in impairment of excitation–contraction coupling [23,24].
To counteract this deficit in the contractile apparatus, muscle power output during an incremental test
might be increased by (1) recruiting more motor units; and (2) recruiting type IIa and type IIb motor
units to obtain energy through anaerobic glycolysis. Based on this reasoning, it has been hypothesized
that the first breakpoint would correspond to the moment when a large number of type IIa (fast twitch
oxidative-glycolytic) motor units come into play, whereas the second threshold would occur when a
large population of type IIb (fast twitch glycolytic) motor units are recruited [6]. These hypotheses,
however, have not been experimentally verified, and thus remain speculative. Indeed, EMG amplitude
could increase due to factors other than the number and type of active motor units, such as broadening
of the trans-membrane action potential [25], crosstalk [4], and even signal cancellation [4]. Thus, motor
unit recruitment is not the only peripheral factor that can account for the non-linear increases in
EMG amplitude.

Central (and not only local) factors could also explain the occurrence of abrupt increases in EMG
amplitude. Indeed, impairment of the contractile machinery during the course of an incremental
test could be compensated by an enhancement of motor unit rate coding. Specifically, it might
be speculated that one or two of the EMG thresholds could be related to increases in motor unit
discharge rate and/or synchronization [4]. The possible involvement of neural mechanisms in the
EMG breakpoints is further supported by the experiments of Airaksinen et al. [26], who demonstrated
that, during an incremental cycling test, both working and non-working muscles showed a shift in
EMG at the same load. Airaksinen’s observations are suggestive of a global change in the neural
activation of muscles. It is therefore plausible that the abrupt increases in EMG activity may be initiated
not only by impairment of excitation–contraction coupling, but also by increases/adjustments in the
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neural activity [26]. We conclude by stating that, because multiple factors influence EMG amplitude,
the assumption that EMG breakpoints are caused by changes in motor unit recruitment should be
treated with caution, as it remains empirically unsupported.

4.2. Comparison of the Multi-Segment Linear Regression Method with Stage Durations of 12 s and 60 s

To date, the multi-segment linear regression method had only been tested during an incremental
test with 12 s stage durations [6], and the applicability of this algorithm to incremental protocols
with longer stage durations (one or two minutes) remained to be verified. Indeed, the 12 s stage test
employed by Lucía et al. resembles a ramp-like protocol, in which muscular effort is continuously
increased to cope with the quick increases in workload. Such test differs noticeably from the graded
steady state protocol employed here, where subjects were asked to maintain a fixed power output
for 1 min. Based on this, it was predicted that the development of fatigue, the pattern of motor unit
recruitment, and/or the sensation of muscular effort may be different in protocols with 12 s and 60 s
stage durations, and that this may result in differences in the detection of EMG thresholds and in
the % of VO2MAX at which the EMG thresholds are reached. Interestingly, we found that the two
breakpoints encountered, EMGT1 and EMGT2, occurred at higher percentages of VO2MAX (around
70%–80% and 90%–95% of VO2MAX, respectively), as compared to those found during the 12-s stage
protocol (around 60%–70% and 80–90% of VO2MAX, respectively). One possible explanation for these
differences may be that, during exercise periods of longer duration, adjustments in motor unit rate
coding may “delay” the recruitment of a significant number of motor units to higher relative intensities
of exercise. Specifically, it may be that, with longer stage durations, exercise intensity is maintained
at the expense of changes in motor unit discharge rate and/or synchronization and less so due to
recruitment of additional motor units [27]. Due to this, great recruitment of additional motor units
would be “delayed/postponed” until higher relative intensities of effort are reached, which explains
why EMG thresholds occur at higher percentages of VO2MAX. Alternatively, it might be hypothesized
that, with longer stage durations, the sensation of muscular effort appears at higher relative intensities,
and thus the signal that triggers the increases in neural activity occurs at a higher percentage of
VO2MAX [26].

It is also worth noting that, with the 60 s stage duration protocol, we detected the first EMG
breakpoint in 75% of participants, whereas, with the 12-s stage duration protocol, the first breakpoint
was identified in 90% of subjects by Lucía et al. [6]. This small discrepancy may be attributed
to slight differences in the development of fatigue in these protocols. Indeed, it is possible that,
with the 60 s stage test, the sensation of muscular effort/fatigue increased gradually at the beginning
and middle of the exercise, but increased more steeply towards the end of the test. Such progression of
fatigue would lead to a EMG time course in which the first breakpoint is not so well marked (for an
example, see Figure 1 of Latasa et al. [28]). In contrast, it is likely that, with the 12 s stage test, fatigue
increased more progressively, thus resulting in an EMG time course in which two breakpoints are
more easily recognized.

4.3. Comparison with Previous Studies

The mathematical method utilized here has clearly identified two breakpoints in the linearity of
the EMG recordings in most subjects. However, in reviewing the literature there is clearly a disparity
of results regarding the number of EMG breakpoints encountered. The existence of a non-linear
increase in EMG amplitude at around the aerobic-to-anaerobic transition intensity was reported by
some authors since the 1980s [1,12], but it was not until 1999 that Lucia et al. noted the existence of a
second EMG breakpoint occurring at near to maximum intensities [6]. Studies prior to Lucía’s findings
overlooked and missed this breakpoint, which was most likely due to the great interest in determining
the transition between the aerobic and anaerobic metabolism, known to be at lower intensities. For this
reason, investigations prior to Lucía’s work only detected one non-linear increase in EMG variables
at about 60%–70% of VO2MAX [1,29]. After the key study of Lucía et al., there continues to be a
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discrepancy in the number and interpretation of EMG breakpoints identified during incremental
tests [30,31]. Remarkably, automatic methods used by most authors for EMG-threshold detection
had the limitation that only one EMG breakpoint could be possibly identified [8,9,32,33]. Essentially,
these methods are based on calculating all the two-segment regressions for the data, and then choosing
the two-segment regression with the least residual sum of squares, thus yielding a single intersection
point. In contrast, the multi-segment linear regression method presented here offers the possibility to
fit the data with three linear segments, which allows better adjustment of data and, most importantly,
determination of two EMG breakpoints. It might be argued that the two EMG thresholds do not
really exist and that they are artificially determined by the algorithm. However, various authors have
confirmed the existence of two EMG thresholds by visual analysis [10,11].

The question remains of why the majority of studies have reported only one EMG threshold
instead of two. Several factors may contribute to the conflicting results. First, it has been suggested
that the second EMG breakpoint can only be detected when subjects are capable of reaching high
intensities during the incremental tests, possibly higher than VT2. This would explain why EMGT2 is
more easily found in professional cyclists: They have the capability of recruiting a sufficient number of
motor units at high intensities so as to induce an abrupt detectable increase in EMG activity [6,11,33].
The two-threshold response reported here was obtained for well-trained cyclists, which lends further
support to this theory. A second factor may be the choice of the fixed pedaling cadence. Indeed,
with a fixed cadence, the increase in exercise intensity is reached at the expense of increasing muscular
effort, which favors the recruitment of fast motor units and possibly facilitates threshold detection
at EMGT2 [6,34]. Finally, it might be possible that previous studies had problems in finding the
both EMG breakpoint because they only assessed one muscle, typically the vastus lateralis. In the
present study, we have shown that EMGT2 is more frequently detected in the gluteus maximus than
in the vastus, and that EMGT2 is more easily detected when various leg muscles are examined. It is
known that the contribution of gluteus maximus to total force is higher at highest workloads [35],
and that hip extensors muscles, like gluteus maximus, compensate the loss of force production of knee
extensors [36,37]. As a consequence, the onset of fatigue would be delayed in the gluteus maximus
compared to the knee extensors; this would also imply a wider range of EMG amplitudes at the highest
workloads, thereby explaining the easier detection of both thresholds in the gluteus maximus.

The present findings suggest that the aerobic-anaerobic transition may take place in two stages,
thus reinforcing the view that such transition may be more complex than expected. The occurrence
of two breakpoints in the EMG vs. time curve would be in accordance with the existence of three
exercise intensity domains (moderate, heavy, and severe), and may signify that, during a continuous
incremental ergometer test, the increase in fatigue takes place in various phases.

4.4. Comparison between EMG Fatigue Thresholds and Ventilatory Thresholds

Our results showed a correspondence between the occurrence of EMGT1 and VT1, on the one hand,
and between EMGT2 and VT2 on the other. This correlation between EMG and ventilatory thresholds
could be due to the enhanced activation of respiratory centers triggered by intramuscular accumulation
of potassium and hydrogen ions, although this possibility is not based on the present results and thus
is speculative. Indeed, it has been suggested that group III–IV muscle afferents are sensitive to changes
in muscle acidosis and extracellular potassium concentration [38,39]. The chemo-sensitive activation of
these afferents could elicit a marked stimulation of the respiratory neurones [40,41], thus leading to an
abrupt increase in minute ventilation. Based on this sensorimotor reflex loop, it might be hypothesized
that ventilation exhibits a first breakpoint (VT1) when an abrupt increase in the number of active
motor units (EMGT1) occurs, and a second breakpoint (VT2), coinciding with the change in motor
unit recruitment from predominantly slow twitch motor units to fast twitch motor units (EMGT2).
In agreement with this theory, there are many reports showing a concomitant parallel increase in
ventilation and EMG activity during an incremental cycling test [2,6,12–14,28,33].
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Alternatively, there are studies suggesting that changes in ventilation observed during incremental
exercise are not triggered by accumulation of potassium and hydrogen ions, but that such changes are
mediated by an increase in neural activity originating from the subthalamic motor region or indirectly
via α-γ coactivation of motor neurons innervating exercising limbs [42]. Such increase in neural activity
may occur in response to the need to progressively recruit fast twitch muscle fibers as exercise intensity
is increased. Finally, there are reports suggesting that ventilation variables are not influenced by motor
unit recruitment, as evidenced by the dissociation between the occurrence of EMG and ventilation
thresholds [2,43].

4.5. Methodological Limitations

The present experiments had various limitations that deserve comment. First, we did not assess
the isometric maximal voluntary contraction and, as a consequence, we had no means to quantify
the level of muscle activation and the possibility to normalize EMG data. Moreover, apart from
the multi-segment linear regression method, no other techniques have been employed to examine
neuromuscular fatigue during the incremental test, such as a decline in maximal voluntary force,
and measures of conduction velocity or spectral EMG analysis. As a result, it was impossible to relate
the occurrence of the two thresholds encountered (EMGT1 and EMGT2) in the EMG RMS response
with other indexes of neuromuscular fatigue. A third limitation is that EMG-based thresholds are
not fully reliable indexes of the level of muscle activation because such EMG measures are affected
by numerous uncontrollable factors (for a review, see Reference [4]). Finally, many factors influence
the relation between EMG amplitude and force, including the thickness of subcutaneous tissue,
the recruitment strategy, and the peak discharge rates of the different MUs [4]. Due to many factors
that can influence this relation, the correlation between surface EMG amplitude the energy system
used during continuous cycling may be lower than expected.

5. Conclusions

In conclusion, it has been shown that, during an incremental cycling test with 60 s stage durations,
the multi-segment linear regression method is able to detect a two-threshold response in the RMS
EMG curve from four lower limb muscles in 75% of participants. The first and second EMG thresholds
occurred at exercise intensities of 70%–80% and 90%–95% of VO2MAX, respectively. The correspondence
between, on the one hand, the first EMG breakpoint and the first ventilatory threshold, and on the
other hand, between the second EMG breakpoint and the second ventilatory threshold, indicates
that the multi-segment linear regression algorithm is a valid non-invasive method for analyzing the
aerobic-anaerobic transition during incremental tests with 1 min stage durations.
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