235 research outputs found

    Recovery from disturbance requires resynchronization of ecosystem nutrient cycles

    Get PDF
    Nitrogen (N) and phosphorus (P) are tightly cycled in most terrestrial ecosystems, with plant uptake more than 10 times higher than the rate of supply from deposition and weathering. This near-total dependence on recycled nutrients and the stoichiometric constraints on resource use by plants and microbes mean that the two cycles have to be synchronized such that the ratio of N:P in plant uptake, litterfall, and net mineralization are nearly the same. Disturbance can disrupt this synchronization if there is a disproportionate loss of one nutrient relative to the other. We model the resynchronization of N and P cycles following harvest of a northern hardwood forest. In our simulations, nutrient loss in the harvest is small relative to postharvest losses. The low N:P ratio of harvest residue results in a preferential release of P and retention of N. The P release is in excess of plant requirements and P is lost from the active ecosystem cycle through secondary mineral formation and leaching early in succession. Because external P inputs are small, the resynchronization of the N and P cycles later in succession is achieved by a commensurate loss of N. Through succession, the ecosystem undergoes alternating periods of N limitation, then P limitation, and eventually co-limitation as the two cycles resynchronize. However, our simulations indicate that the overall rate and extent of recovery is limited by P unless a mechanism exists either to prevent the P loss early in succession (e.g., P sequestration not stoichiometrically constrained by N) or to increase the P supply to the ecosystem later in succession (e.g., biologically enhanced weathering). Our model provides a heuristic perspective from which to assess the resynchronization among tightly cycled nutrients and the effect of that resynchronization on recovery of ecosystems from disturbance

    I need more knowledge : Qualitative Analysis of Oncology Providers\u27 Experiences with Sexual and Gender Minority Patients

    Get PDF
    Background: While societal acceptance for sexual and gender minority (SGM) individuals is increasing, this group continues to face barriers to quality healthcare. Little is known about clinicians\u27 experiences with SGM patients in the oncology setting. To address this, a mixed method survey was administered to members of the ECOG-ACRIN Cancer Research Group. Materials and methods: We report results from the open-ended portion of the survey. Four questions asked clinicians to describe experiences with SGM patients, reservations in caring for them, suggestions for improvement in SGM cancer care, and additional comments. Data were analyzed using content analysis and the constant comparison method. Results: The majority of respondents noted they had no or little familiarity with SGM patients. A minority of respondents noted experience with gay and lesbian patients, but not transgender patients; many who reported experience with transgender patients also noted difficulty navigating the correct use of pronouns. Many respondents also highlighted positive experiences with SGM patients. Suggestions for improvement in SGM cancer care included providing widespread training, attending to unique end-of-life care issues among SGM patients, and engaging in efforts to build trust. Conclusion: Clinicians have minimal experiences with SGM patients with cancer but desire training. Training the entire workforce may improve trust with, outreach efforts to, and cancer care delivery to the SGM community

    Genital herpes evaluation by quantitative TaqMan PCR: correlating single detection and quantity of HSV-2 DNA in cervicovaginal lavage fluids with cross-sectional and longitudinal clinical data

    Get PDF
    Abstract Objective To evaluate the utility of a single quantitative PCR (qPCR) measurement of HSV (HSV-1&2) DNA in cervicovaginal lavage (CVL) specimens collected from women with predominantly chronic HSV-2 infection in assessing genital HSV shedding and the clinical course of genital herpes (GH) within a cohort with semiannual schedule of follow up and collection of specimens. Methods Two previously described methods used for detection of HSV DNA in mucocutaneous swab samples were adapted for quantification of HSV DNA in CVLs. Single CVL specimens from 509 women were tested. Presence and quantity of CVL HSV DNA were explored in relation to observed cross-sectional and longitudinal clinical data. Results The PCR assay was sensitive and reproducible with a limit of quantification of ~50 copies per milliliter of CVL. Overall, 7% of the samples were positive for HSV-2 DNA with median log10 HSV-2 DNA copy number of 3.9 (IQR: 2.6-5.7). No HSV-1 was detected. Presence and quantity of HSV-2 DNA in CVL directly correlated with the clinical signs and symptoms of presence of active symptomatic disease with frequent recurrences. Conclusion Single qPCR measurement of HSV DNA in CVL fluids of women with chronic HSV-2 infection provided useful information for assessing GH in the setting of infrequent sampling of specimens. Observed positive correlation of the presence and quantity of HSV-2 DNA with the presence of active and more severe course of HSV-2 infection may have clinical significance in the evaluation and management of HSV-2 infected patients

    ADAMS project: a genetic Association study in individuals from Diverse Ancestral backgrounds with Multiple Sclerosis based in the UK

    Get PDF
    PURPOSE: Genetic studies of multiple sclerosis (MS) susceptibility and severity have focused on populations of European ancestry. Studying MS genetics in other ancestral groups is necessary to determine the generalisability of these findings. The genetic Association study in individuals from Diverse Ancestral backgrounds with Multiple Sclerosis (ADAMS) project aims to gather genetic and phenotypic data on a large cohort of ancestrally-diverse individuals with MS living in the UK. PARTICIPANTS: Adults with self-reported MS from diverse ancestral backgrounds. Recruitment is via clinical sites, online (https://app.mantal.co.uk/adams) or the UK MS Register. We are collecting demographic and phenotypic data using a baseline questionnaire and subsequent healthcare record linkage. We are collecting DNA from participants using saliva kits (Oragene-600) and genotyping using the Illumina Global Screening Array V.3. FINDINGS TO DATE: As of 3 January 2023, we have recruited 682 participants (n=446 online, n=55 via sites, n=181 via the UK MS Register). Of this initial cohort, 71.2% of participants are female, with a median age of 44.9 years at recruitment. Over 60% of the cohort are non-white British, with 23.5% identifying as Asian or Asian British, 16.2% as Black, African, Caribbean or Black British and 20.9% identifying as having mixed or other backgrounds. The median age at first symptom is 28 years, and median age at diagnosis is 32 years. 76.8% have relapsing-remitting MS, and 13.5% have secondary progressive MS. FUTURE PLANS: Recruitment will continue over the next 10 years. Genotyping and genetic data quality control are ongoing. Within the next 3 years, we aim to perform initial genetic analyses of susceptibility and severity with a view to replicating the findings from European-ancestry studies. In the long term, genetic data will be combined with other datasets to further cross-ancestry genetic discoveries

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment
    corecore