71 research outputs found

    Cumulative light curves of gamma-ray bursts and relaxation systems

    Full text link
    The cumulative light curves of a large sample of gamma-ray bursts (GRBs) were obtained by summing the BATSE counts. The smoothed profiles are much simpler than the complex and erratic running light curves that are normally used. For most GRBs the slope of the cumulative light curve (S) is approximately constant over a large fraction of the burst. The bursts are modelled as relaxation systems that continuously accumulate energy in the reservoir and discontinuously release it. The slope is a measure of the cumulative power output of the central engine. A plot of S versus peak flux in 64ms (P64ms) shows a very good correlation over a wide range for both short and long GRBs. No relationship was found between S and GRBs with known redshift. The standard slope (S'), which is representative of the power output per unit time, is correlated separately with P64ms for both sub-classes indicating more powerful outbursts for the short GRBs. S' is also anticorrelated with GRB duration. These results imply that GRBs are powered by accretion into a black hole.Comment: 4 pages, 2 figures. Accepted for publication in Astronomy and Astrophysics Letter

    Temporal properties of short and long gamma-ray bursts

    Full text link
    A temporal analysis was performed on a sample of 100 bright short GRBs with T90 < 2s from the BATSE Current Catalog along with a similar analysis on 319 long bright GRBs with T90 > 2s from the same catalog. The short GRBs were denoised using a median filter and the long GRBs were denoised using a wavelet method. Both samples were subjected to an automated pulse selection algorithm to objectively determine the effects of neighbouring pulses. The rise times, fall times, FWHM, pulse amplitudes and areas were measured and their frequency distributions are presented. The time intervals between pulses were also measured. The frequency distributions of the pulse properties were found to be similar and consistent with lognormal distributions for both the short and long GRBs. The time intervals between the pulses and the pulse amplitudes of neighbouring pulses were found to be correlated with each other. The same emission mechanism can account for the two sub-classes of GRBs.Comment: 3 pages, 8 figures; Proceedings of "Gamma-Ray Burst and Afterglow Astronomy 2001", Woods Hol

    Timing diagrams and correlations in gamma-ray bursts signal jets from accretion into black holes

    Full text link
    The temporal properties of a sample of 498 bright gamma-ray bursts (GRBs) with durations between 0.05 s and 674 s were analysed. The large range in duration (T90) is accompanied by a similarly large range in the median values of the pulse timing properties including rise time, fall time, FWHM and separation between the pulses. Four timing diagrams relating these pulse properties to T90 are presented and show the power law relationships between the median values of the 4 pulse timing properties and T90, but also that the power laws depend in a consistent manner on the number of pulses per GRB. The timing diagrams are caused by the correlated properties of the pulses in the burst and can be explained by a combination of factors including the Doppler boost factor Gamma, a viewing effect caused by a jet and different progenitors. GRBs with similar values of T90 have a wide range in the number of pulses. GRBs with the large number of short and spectrally hard pulses may occur either from a homogeneous jet with a higher average value of Gamma or close to the axis of an inhomogeneous jet with higher values of Gamma near the rotation axis. The less luminous GRBs with fewer pulses may originate further from the axis of the inhomogeneous jet. The pulses in GRBs have six distinctive statistical properties including correlations between time intervals, correlations between pulse amplitudes, an anticorrelation between pulse amplitudes and time intervals, and a link to intermittency in GRS 1915+105. The timing diagrams and correlated pulses suggest that GRBs are powered by accretion processes signalling jets from the formation of black holes.Comment: 4 pages, 1 figur

    Temporal properties of the short gamma-ray bursts

    Get PDF
    A temporal analysis has been performed on a sample of 100 bright gamma-ray bursts (GRBs) with T90<2s from the BATSE current catalog. The GRBs were denoised using a median filter and subjected to an automated pulse selection algorithm as an objective way of idenitifing the effects of neighbouring pulses. The rise times, fall times, FWHM, pulse amplitudes and areas were measured and the frequency distributions are presented here. All are consistent with lognormal distributions. The distribution of the time intervals between pulses is not random but consistent with a lognormal distribution. The time intervals between pulses and pulse amplitudes are highly correlated with each other. These results are in excellent agreement with a similar analysis that revealed lognormal distributions for pulse properties and correlated time intervals between pulses in bright GRBs with T90>2s. The two sub-classes of GRBs appear to have the same emission mechanism which is probably caused by internal shocks. They may not have the same progenitors because of the generic nature of the fireball model.Comment: 4 pages, 7 figure

    Temporal properties of gamma-ray bursts as signatures of jets from the central engine

    Full text link
    A comprehensive temporal analysis has been performed on the 319 brightest GRBs with T90>2s from the BATSE current catalog. The rise times, fall times, full-widths at half maximum (FWHM), pulse amplitudes and pulse areas were measured and the frequency distributions are presented here. The distribution of time intervals between pulses is not random but compatible with a lognormal distribution when allowance was made for the 64 ms time resolution and a small excess (5%) of long duration intervals that is often referred to as a Pareto-Levy tail. A range of correlations are presented on pulse and burst properties. The rise and fall times, FWHM and area of the pulses are highly correlated with each other. The time intervals between pulses and pulse amplitudes of neighbouring pulses are correlated with each other. It was also found that the number of pulses, N, in GRBs is strongly correlated with the fluence and the duration and that can explain the well known correlation between duration and fluence. The GRBs were sorted into three catagories based on N i.e. 3=25. The properties of pulses before and after the stongest pulse were compared for the three catagories of bursts. This analysis revealed that the GRBs with large numbers of pulses have narrower and faster pulses and also larger fluences, longer durations and higher hardness ratios than the GRBs with smaller numbers of pulses.Comment: 19 pages, 22 figures. Submitted to A&A July 200

    Kerr black holes and time profiles of gamma-ray bursts

    Full text link
    The cumulative light curves of gamma-ray bursts (GRBs) smooth the spiky nature of the running light curve. The cumulative count increases in an approximately linear way with time t for most bursts. In 19 out of 398 GRBs with T90 > 2s, the cumulative light curve was found to increase with time as \~t^2 implying a linear increase in the running light curve. The non-linear sections last for a substantial fraction of the GRB duration, have a large proportion of the cumulative count and many resolved pulses that usually end with the highest pulse in the burst. The reverse behaviour was found in 11 GRBs where the running light curve decreased with time and some bursts are good mirror images of the increases. These GRBs are among the spectrally hardest bursts observed by BATSE. The most likely interpretation is that these effects are signatures of black holes that are either being spun up or down in the accretion process. In the spin up case, the increasing Kerr parameter of the black hole allows additional rotational and accretion energy to become available for extraction. The process is reversed if the black hole is spun down by magnetic field torques. The luminosity changes in GRBs are consistent with the predictions of the BZ process and neutrino annihilation and thus provide the link to spinning black holes. GRBs provide a new window for studying the general relativistic effects of Kerr black holes.Comment: 5 pages, 2 figures, accepted for publication in Astronomy and Astrophysics Letter

    Unveiling the origin of X-ray flares in Gamma-Ray Bursts

    Full text link
    We present an updated catalog of 113 X-ray flares detected by Swift in the ~33% of the X-ray afterglows of Gamma-Ray Bursts (GRB). 43 flares have a measured redshift. For the first time the analysis is performed in 4 different X-ray energy bands, allowing us to constrain the evolution of the flare temporal properties with energy. We find that flares are narrower at higher energies: their width follows a power-law relation w~E^{-0.5} reminiscent of the prompt emission. Flares are asymmetric structures, with a decay time which is twice the rise time on average. Both time scales linearly evolve with time, giving rise to a constant rise-to-decay ratio: this implies that both time scales are stretched by the same factor. As a consequence, the flare width linearly evolves with time to larger values: this is a key point that clearly distinguishes the flare from the GRB prompt emission. The flare 0.3-10 keV peak luminosity decreases with time, following a power-law behaviour with large scatter: L_{pk}~ t_{pk}^{-2.7}. When multiple flares are present, a global softening trend is established: each flare is on average softer than the previous one. The 0.3-10 keV isotropic energy distribution is a log-normal peaked at 10^{51} erg, with a possible excess at low energies. The flare average spectral energy distribution (SED) is found to be a power-law with spectral energy index beta~1.1. These results confirmed that the flares are tightly linked to the prompt emission. However, after considering various models we conclude that no model is currently able to account for the entire set of observations.Comment: MNRAS submitte
    • …
    corecore