56 research outputs found

    Molecular simulation of absolute hydration Gibbs energies of polar compounds

    Get PDF
    In this work, we present simulation-based predictions of the absolute hydration energy for several simple polar molecules with different functional groups, as well as for more complex multifunctional molecules. Our calculations were performed using the thermodynamic integration methodology where electrostatic and non-polar interactions were treated separately, allowing for a stable transition path between the end-points of the integration. An appropriate methodology for the analytical integration of the simulation data was applied. We compare the performance of three popular molecular mechanics force fields: TraPPE. Gromos and OPLS-AA for the description of solute atoms in MSPC/E water. It is observed that these force fields generally perform well for the simpler molecules, but are less accurate when multifunctional molecules are considered

    1-Octanol/water partition coefficients of n-alkanes from molecular simulations of absolute solvation free energies

    Get PDF
    The 1-octanol/water partition coefficient is an important thermodynamic variable usually employed to understand and quantify the partitioning of solutes between aqueous and organic phases. It finds widespread use in many empirical correlations to evaluate the environmental fate of pollutants as well as in the design of pharmaceuticals. The experimental evaluation of 1-octanol/water partition coefficients is an expensive and time-consuming procedure, and thus, theoretical estimation methods are needed, particularly when a physical sample of the solute may not yet be available, such as in pharmaceutical screening. 1-Octanol/water partition coefficients can be obtained from Gibbs free energies of solvation of the solute in both the aqueous and the octanol phases. The accurate evaluation of free energy differences remains today a challenging problem in computational chemistry. In order to study the absolute solvation Gibbs free energies in 1-octanol, a solvent that can mimic many properties of important biological systems, free energy calculations for n-alkanes in the range C-1-C-8 were performed using molecular simulation techniques, following the thermodynamic integration approach. In the first part of this paper, we test different force fields by evaluating their performance in reproducing pure 1-octanol properties. It is concluded that all-atom force fields can provide good accuracy but at the cost of a higher computational time compared to that of the united-atom force fields. Recent versions of united-atom force fields, such as Gromos and TraPPE, provide satisfactory results and are, thus, useful alternatives to the more expensive all-atom models. In the second part of the paper, the Gibbs free energy of solvation in 1-octanol is calculated for several n-alkanes using three force fields to describe the solutes, namely Gromos, TraPPE, and OPLS-AA. Generally, the results obtained are in excellent agreement with the available experimental data and are of similar accuracy to commonly used QSPR models. Moreover, we have estimated the Gibbs free energy of hydration for the different compounds with the three force fields, reaching average deviations from experimental data of less than 0.2 kcal/mol for the case of the Gromos force field. Finally, we systematically compare different strategies to obtain the 1-octanol/water partition coefficient from the simulations. It is shown that a fully predictive method combining the Gromos force field in the aqueous phase and the OPLS-AA/TraPPE force field for the organic phase can give excellent predictions for n-alkanes up to C-8 with an absolute average deviation of 0.1 log P units to the experimental data

    Predicting hydration Gibbs energies of alkyl-aromatics using molecular simulation : a comparison of current force fields and the development of a new parameter set for accurate solvation data

    Get PDF
    The Gibbs energy of hydration is an important quantity to understand the molecular behavior in aqueous systems at constant temperature and pressure. In this work we review the performance of some popular force fields, namely TraPPE, OPLS-AA and Gromos, in reproducing the experimental Gibbs energies of hydration of several alkyl-aromatic compounds-benzene, mono-, di- and tri-substituted alkylbenzenes-using molecular simulation techniques. In the second part of the paper, we report a new model that is able to improve such hydration energy predictions, based on Lennard Jones parameters from the recent TraPPE-EH force field and atomic partial charges obtained from natural population analysis of density functional theory calculations. We apply a scaling factor determined by fitting the experimental hydration energy of only two solutes, and then present a simple rule to generate atomic partial charges for different substituted alkyl-aromatics. This rule has the added advantages of eliminating the unnecessary assumption of fixed charge on every substituted carbon atom and providing a simple guideline for extrapolating the charge assignment to any multi-substituted alkyl-aromatic molecule. The point charges derived here yield excellent predictions of experimental Gibbs energies of hydration, with an overall absolute average deviation of less than 0.6 kJ mol(-1). This new parameter set can also give good predictive performance for other thermodynamic properties and liquid structural information

    Low-surface energy surfactants with branched hydrocarbon architectures

    Get PDF
    International audienceSurface tensiometry and small-angle neutron scattering have been used to characterize a new class of low-surface energy surfactants (LSESs), "hedgehog" surfactants. These surfactants are based on highly branched hydrocarbon (HC) chains as replacements for environmentally hazardous fluorocarbon surfactants and polymers. Tensiometric analyses indicate that a subtle structural modification in the tails and headgroup results in significant effects on limiting surface tensions γcmc at the critical micelle concentration: a higher level of branching and an increased counterion size promote an effective reduction of surface tension to low values for HC surfactants (γcmc 24 mN m-1). These LSESs present a new class of potentially very important materials, which form lamellar aggregates in aqueous solutions independent of dilution

    Using molecular simulation to predict solute solvation and partition coefficients in solvents of different polarity

    Get PDF
    A methodology is proposed for the prediction of the Gibbs energy of solvation (Delta(Solv)G) based on MD simulations. The methodology is then used to predict DSolvG of four solutes (namely propane, benzene, ethanol and acetone) in several solvents of different polarities (including n-hexane, n-hexadecane, ethylbenzene, 1-octanol, acetone and water) while testing the validity of the TraPPE force field parameters. Excellent agreement with experimental data is obtained, with average deviations of 0.2, 1.1, 0.8 and 1.2 kJ mol(-1), for the four solutes respectively. Subsequently, partition coefficients (log P) for forty different solute/solvent systems are predicted. The a priori knowledge of partition coefficient values is of high importance in chemical and pharmaceutical separation process design or as a measure of the increasingly important environmental fate. Here again, the agreement between experimental data and simulation predictions is excellent, with an absolute average deviation of 0.28 log P units. However, this deviation can be decreased down to 0.14 log P units, just by optimizing partial atomic charges of acetone in the water phase. Consequently, molecular simulation is proven to be a tool with strong physical basis able to predict log P with competitive accuracy when compared to the popular statistical methods with weak physical basis

    Surfactants at the design limit

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Langmuir, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.langmuir.5b00336This article analyzes how the individual structural elements of surfactant molecules affect surface properties, in particular, the point of reference defined by the limiting surface tension at the aqueous cmc, γcmc. Particular emphasis is given to how the chemical nature and structure of the hydrophobic tails influence γcmc. By comparing the three different classes of surfactants, fluorocarbon, silicone, and hydrocarbon, a generalized surface packing index is introduced which is independent of the chemical nature of the surfactants. This parameter ϕcmc represents the volume fraction of surfactant chain fragments in a surface film at the aqueous cmc. It is shown that ϕcmc is a useful index for understanding the limiting surface tension of surfactants and can be useful for designing new superefficient surfactants

    High-pressure solubilities of carbon dioxide in ionic liquids based on bis(trifluoromethylsulfonyl)imide and chloride

    No full text
    In this work, the solubility of carbon dioxide (CO2) in seven different ionic liquids (ILs) was measured using a high-pressure sapphire cell, in the pressure range of 8-22 MPa and at two temperatures, 313.2 K and 323.2 K. In order to discuss the influence of the cation, ILs based on bis(trifluoromethylsulfonyl)imide. [NTf2] were chosen. They were coupled with 1-butyl-3-methylimidazolium, [C(4)mim](+), 1-decyl-3-methylimidazolium, [C(10)mim](+), 1-butyl-methylpyrrolidinium, [Pyrr(4,1)](+), butyltrimethylammonium, [N-4,N-1,N-1,N-1](+), methyltrioctylammonium, [N-1,N-8,N-8,N-8](+) and trihexyltetradecylphosphonium, [P-6,P-6,P-6,P-14](+)cation. The phosphonium based cation was also combined with chloride, [Cl](-), giving an opportunity to discuss the influence of an anion as well. The solubility data obtained in this work were used to evaluate the importance of explicitly including association for describing such systems. For that purpose, we compared the solubility modelling results from two cubic equations of state (Peng-Robinson and Soave-Redlich-Kwong) with those from the Cubic Plus Association Equation of State (CPA EoS) using different association schemes for the ionic liquids. We found that for such systems there is no major advantage in considering ILs as associating components. (c) 2012 Elsevier B.V. All rights reserved
    corecore