77 research outputs found

    Stable 6H organic-inorganic hybrid lead perovskite and competitive formation of 6H and 3C perovskite structure with mixed A cations

    Get PDF
    We thank the Chinese Scholarship Council for Ph.D. Studentship support (to JT). Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under grant no. 2.5020.11. D.B. is an FNRS Research Director.We report the synthesis and properties of a new organic–inorganic hybrid lead perovskite (OIHP), azetidinium lead bromide (AzPbBr3), possessing the 6H perovskite structure (space group P63/mmc with a = 8.745 Å and c = 21.329 Å). This compound has a band gap of 2.81 eV and remains stable for >6 months in the ambient environment. DFT simulations are in fairly good agreement with experiments and indicate that AzPbBr3 is a direct band gap semiconductor. A partial solid solution with the cubic (3C) perovskite methylammonium lead bromide (Az1–xMAxPbBr3) is possible. In Az-rich 6H compositions the lattice volume and band gap are invariant with x (≤0.3), whereas in the MA-rich 3C phase (0.8 ≤ x ≤ 1.0) the lattice parameters and band gap increase with increasing Az content. Although the relatively large band gap of AzPbBr3 makes it unsuitable for photovoltaic applications, the results indicate Az+ is a suitable alternative organic A cation for band gap tuning of OHIPs.PostprintPeer reviewe

    Light harvesting of CdSe/CdS quantum dots coated with b-cyclodextrin based host-guest species through resonant energy transfer from the guests

    Get PDF
    Films of nano-hybrids based on red emitting CdSe/CdS QDs functionalized with perthiolated \u3b2-cyclodextrin hosting a green emitting nitrobenzoxadiazole derivative show emission harvested by the host\u2013guest organic system through resonant energy transfer from the organic host\u2013guest species to the QD

    Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites.

    Get PDF
    We investigate the origin of the broadband visible emission in layered hybrid lead-halide perovskites and its connection with structural and photophysical properties. We study ⟨001⟩ oriented thin films of hexylammonium (HA) lead iodide, (C6H16N)2PbI4, and dodecylammonium (DA) lead iodide, (C12H28N)2PbI4, by combining first-principles simulations with time-resolved photoluminescence, steady-state absorption and X-ray diffraction measurements on cooling from 300 to 4 K. Ultrafast transient absorption and photoluminescence measurements are used to track the formation and recombination of emissive states. In addition to the excitonic photoluminescence near the absorption edge, we find a red-shifted, broadband (full-width at half-maximum of about 0.4 eV), emission band below 200 K, similar to emission from ⟨110⟩ oriented bromide 2D perovskites at room temperature. The lifetime of this sub-band-gap emission exceeds that of the excitonic transition by orders of magnitude. We use X-ray diffraction measurements to study the changes in crystal lattice with temperature. We report changes in the octahedral tilt and lattice spacing in both materials, together with a phase change around 200 K in DA2PbI4. DFT simulations of the HA2PbI4 crystal structure indicate that the low-energy emission is due to interstitial iodide and related Frenkel defects. Our results demonstrate that white-light emission is not limited to ⟨110⟩ oriented bromide 2D perovskites but a general property of this class of system, and highlight the importance of defect control for the formation of low-energy emissive sites, which can provide a pathway to design tailored white-light emitters

    Fashioning Fluorous Organic Spacers for Tunable and Stable Layered Hybrid Perovskites

    Get PDF
    Two dimensional (2D) organic-inorganic hybrid perovskites have recently attracted enormous attention due to their higher environmental stability with respect to three-dimensional (3D) perovskites and larger structural tunability. The layered structure relaxes constraints on the dimensions of the organic cations that alternate the inorganic sheets, opening up a large choice on the organics, ultimately enabling the creation of tunable layered perovskites. Here, we report on a series of fluorous cations, varying in size and shape, as building blocks for a new family of fluorous 2D lead-iodide perovskites. These display a large tunability in the optical and dielectric properties depending on the structure of the fluorous cations. Importantly, despite the invariant inorganic framework, the 2D perovskite electronic structure is strongly affected by the cation size. The longer the cation, the smaller the 2D perovskite band gap and the exciton binding energy (reducing from 400 meV down to 130 meV). Such variation is induced by the strain in the inorganic sheet, resulting in a more dispersed valence and conduction bands, in turn yielding a smaller band gap. In addition, a smaller effective mass for the 2D perovskite with the longest cation is calculated, for which improved transport properties are anticipated. Importantly, the fluorous moiety confers extreme stability to the 2D perovskite and enhances the hydrophobic character of the perovskite surface, which remains perfectly stable for more than one month in ambient conditions

    Serum Uric Acid Predicts All-Cause and Cardiovascular Mortality Independently of Hypertriglyceridemia in Cardiometabolic Patients without Established CV Disease: A Sub-Analysis of the URic acid Right for heArt Health (URRAH) Study

    Get PDF
    High serum uric acid (SUA) and triglyceride (TG) levels might promote high-cardiovascular risk phenotypes across the cardiometabolic spectrum. However, SUA predictive power in the presence of normal and high TG levels has never been investigated. We included 8124 patients from the URic acid Right for heArt Health (URRAH) study cohort who were followed for over 20 years and had no established cardiovascular disease or uncontrolled metabolic disease. All-cause mortality (ACM) and cardiovascular mortality (CVM) were explored by the Kaplan-Meier estimator and Cox multivariable regression, adopting recently defined SUA cut-offs for ACM (>= 4.7 mg/dL) and CVM (>= 5.6 mg/dL). Exploratory analysis across cardiometabolic subgroups and a sensitivity analysis using SUA/serum creatinine were performed as validation. SUA predicted ACM (HR 1.25 [1.12-1.40], p < 0.001) and CVM (1.31 [1.11-1.74], p < 0.001) in the whole study population, and according to TG strata: ACM in normotriglyceridemia (HR 1.26 [1.12-1.43], p < 0.001) and hypertriglyceridemia (1.31 [1.02-1.68], p = 0.033), and CVM in normotriglyceridemia (HR 1.46 [1.23-1.73], p < 0.001) and hypertriglyceridemia (HR 1.31 [0.99-1.64], p = 0.060). Exploratory and sensitivity analyses confirmed our findings, suggesting a substantial role of SUA in normotriglyceridemia and hypertriglyceridemia. In conclusion, we report that SUA can predict ACM and CVM in cardiometabolic patients without established cardiovascular disease, independent of TG levels
    • …
    corecore