4,109 research outputs found

    An Application of Lorentz Invariance Violation in Black Hole Thermodynamics

    Full text link
    In this paper, we have applied the Lorentz-invariance-violation (LIV) class of dispersion relations (DR) with the dimensionless parameter n = 2 and the "sign of LIV" {\eta}_+ = 1, to phenomenologically study the effect of quantum gravity in the strong gravitational field. Specifically, we have studied the effect of the LIV-DR induced quantum gravity on the Schwarzschild black hole thermodynamics. The result shows that the effect of the LIV-DR induced quantum gravity speeds up the black hole evaporation, and its corresponding black hole entropy undergoes a leading logarithmic correction to the "reduced Bekenstein-Hawking entropy", and the ill defined situations (i.e. the singularity problem and the critical problem) are naturally bypassed when the LIV-DR effect is present. Also, to put our results in a proper perspective, we have compared with the earlier findings by another quantum gravity candidate, i.e. the generalized uncertainty principle (GUP). Finally, we conclude from the inert remnants at the final stage of the black hole evaporation that, the GUP as a candidate for describing quantum gravity can always do as well as the LIV-DR by adjusting the model-dependent parameters, but in the same model-dependent parameters the LIV-DR acts as a more suitable candidate.Comment: 18 pages, 7 figure

    Hawking radiation from (2+1)-dimensional BTZ black holes

    Full text link
    Motivated by the Robinson-Wilczek's recent viewpoint that Hawking radiation can be treated as a compensating energy momentum tensor flux required to cancel gravitational anomaly at the horizon of a Schwarzschild-type black hole, we investigate Hawking radiation from the rotating (2+1)(2+1)-dimensional BTZ black hole and the charged (2+1)(2+1)-dimensional BTZ black hole, via cancellation of gauge and gravitational anomalies at the horizon. To restore gauge invariance and general coordinate covariance at the quantum level, one must introduce the corresponding gauge current and energy momentum tensor fluxes to cancel gauge and gravitational anomalies at the horizon. The results show that the values of these compensating fluxes are exactly equal to those of (1+1)(1+1)-dimensional blackbody radiation at the Hawking temperature.Comment: 15 pages; references updated and added; to appear in Phys. Lett.

    PACF: A precision-adjustable computational framework for solving singular values

    Get PDF
    Singular value decomposition (SVD) plays a significant role in matrix analysis, and the differential quotient difference with shifts (DQDS) algorithm is an important technique for solving singular values of upper bidiagonal matrices. However, ill-conditioned matrices and large-scale matrices may cause inaccurate results or long computation times when solving singular values. At the same time, it is difficult for users to effectively find the desired solution according to their needs. In this paper, we design a precision-adjustable computational framework for solving singular values, named PACF. In our framework, the same solution algorithm contains three options: original mode, high-precision mode, and mixed-precision mode. The first algorithm is the original version of the algorithm. The second algorithm is a reliable numerical algorithm we designed using Error-free transformation (EFT) technology. The last algorithm is an efficient numerical algorithm we developed using the mixed-precision idea. Our PACF can add different solving algorithms for different types of matrices, which are universal and extensible. Users can choose different algorithms to solve singular values according to different needs. This paper implements the high-precision DQDS and mixed-precision DQDS algorithms and conducts extensive experiments on a supercomputing platform to demonstrate that our algorithm is reliable and efficient. Besides, we introduce the error analysis of the inner loop of the DQDS and HDQDS algorithms

    Anomalies and de Sitter radiation from the generic black holes in de Sitter spaces

    Full text link
    Robinson-Wilczek's recent work shows that, the energy momentum tensor flux required to cancel gravitational anomaly at the event horizon of a Schwarzschild-type black hole has an equivalent form to that of a (1+1)-dimensional blackbody radiation at the Hawking temperature. Motivated by their work, Hawking radiation from the cosmological horizons of the general Schwarzschild-de Sitter and Kerr-de Sitter black holes, has been studied by the method of anomaly cancellation. The result shows that the absorbing gauge current and energy momentum tensor fluxes required to cancel gauge and gravitational anomalies at the cosmological horizon are precisely equal to those of Hawking radiation from it. It should be emphasized that the effective field theory for generic black holes in de Sitter spaces should be formulated within the region between the event horizon (EH) and the cosmological horizon (CH), to integrate out the classically irrelevant ingoing modes at the EH and the classically irrelevant outgoing modes at the CH, respectively.Comment: 14 pages without figure, use elsart.cls, to appear in Phys.Lett.

    Twenty-six circulating antigens and two novel diagnostic candidate molecules identified in the serum of canines with experimental acute toxoplasmosis

    Get PDF
    List of CAg proteins identified by LC-MS/MS after IP enrichment and purification with ESA antibodies. (XLSX 27 kb
    corecore