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Abstract

Singular value decomposition (SVD) plays a significant role in matrix analy-
sis, and the differential quotient difference with shifts (DQDS) algorithm is an
important technique for solving singular values of upper bidiagonal matrices.
However, ill-conditioned matrices and large-scale matrices may cause inaccurate
results or long computation times when solving singular values. At the same
time, it is difficult for users to effectively find the desired solution according
to their needs. In this paper, we design a precision-adjustable computational
framework for solving singular values, named PACF. In our framework, the
same solution algorithm contains three options: original mode, high-precision
mode, and mixed-precision mode. The first algorithm is the original version
of the algorithm. The second algorithm is a reliable numerical algorithm we
designed using Error-free transformation (EFT) technology. The last algorithm
is an efficient numerical algorithm we developed using the mixed-precision idea.
Our PACF can add different solving algorithms for different types of matri-
ces, which are universal and extensible. Users can choose different algorithms
to solve singular values according to different needs. This paper implements
the high-precision DQDS and mixed-precision DQDS algorithms and conducts
extensive experiments on a supercomputing platform to demonstrate that our
algorithm is reliable and efficient. Besides, we introduce the error analysis of
the inner loop of the DQDS and HDQDS algorithms.
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1. Introduction

Singular value decomposition (SVD) is widely used in scientific research, ur-
ban construction, medical services, and other issues in daily life, such as rolling
element bearing diagnosis [1], image de-noising and compression [2], analysis
of phase-space growth rates [3], enhanced resolution of seismic data [4], image
analysis using PDEs [5], and so on. It is a significant tool of linear algebra
in matrix analysis. There are various methods for calculating matrix singular
values [6, 7], and these methods have important practical significance. For ex-
ample, matrix singular values play an essential role in the least-squares method.
However, we need to use different algorithms when solving singular values of
different types of matrices. This is relatively time-consuming work. Besides,
there will be some problems when solving the singular value of the matrix, such
as inaccurate results and long calculation time.

Generally, the inaccuracy of the solution results is owing to the existence of
rounding errors. And rounding errors are not avoided in floating point arith-
metic [8, 9]. Rounding errors can lead to inaccurate or even wrong calculation
results after massive accumulation, especially when encountering ill-conditioned
problems. Error-free transformations (EFT) technology [10] shows reliable per-
formance in overcoming the cumulative of reducing rounding errors. The key
idea is to return the rounding error of operations to the original calculation re-
sult through cumulative compensation [11, 12]. For another aspect, the mixed-
precision idea can be used to reduce computation time while maintaining the
same number of program iterations [13, 14, 15]. Numerical methods using this
idea generally use higher precision in the algorithm’s key calculation steps and
lower precision in other parts. It takes advantage of the lower precision formats’
high performance and reduces the overhead of global computation by adopting
mixed data formats.

Based on this, we propose a precision-adjustable multi-mode computational
framework named PACF, used in this article for solving singular values. Users
can choose different algorithms to solve singular values according to different
needs. The same solution algorithm contains three modes in our framework:
original mode, high-precision mode, and mixed-precision mode. The first is the
original version of the algorithm, the second is a reliable numerical algorithm we
designed using EFT technology, and the last is an efficient numerical algorithm
we designed using the mixed-precision idea. Our PACF can add different solving
algorithms for different types of matrices, which are universal and extensible.
Currently, we implement the differential quotient difference with shifts (DQDS)
algorithm [16, 17] that calculates the singular values of upper bidiagonal matri-
ces. We will introduce the DQDS algorithm as an example in the subsequent
content. We conduct extensive experimental verifications on a supercomputing
platform to demonstrate the effectiveness of the above ideas. The five main
contributions of this article are shown below.

� We design a high-precision DQDS algorithm based on EFT technology,
which makes the solution results more reliable. We further propose a
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double-double format DQDS algorithm to better illustrate the HDQDS
algorithm’s accuracy.

� We devise a mixed-precision DQDS algorithm based on the idea of mixed-
precision, exploiting the potential performance advantages of different pre-
cision formats to reduce overhead.

� We propose a precision-adjustable computational framework for solving
singular values, which can provide different modes according to different
matrices and different solution requirements.

� We describe the error analysis of the inner loop of the DQDS algorithm
and the high-precision DQDS algorithm.

� Extensive experiments verify that our designed algorithm has a superior
performance to the original algorithm, and our framework is reliable and
efficient.

The remainder of this work is organized as below. We provide a background
overview and comments on related literature in Section 2. Section 3 introduces
DQDS algorithms, rounding errors, and EFT technology. In Section 4, we ex-
haustively describe our framework and proposed algorithm. Section 5 describes
the error analysis of the inner loop of the DQDS and HDQDS algorithm. Sec-
tion 6 shows the accuracy and stability of our algorithm through numerical
experiments. Section 7 summarizes the whole paper as well as introduces future
work.

2. Related Work

This section mainly introduces the related background knowledge of the
DQDS algorithm (Section 2.1), EFT technique (Section 2.2), and mixed-precision
(Section 2.3).

2.1. The DQDS Algorithm

The DQDS algorithm was designed by Parlett et al. [16] after adding the
shift s based on the differential quotient difference (DQD) algorithm. It has
been shown that the existence of the shift s accelerates the convergence of the
algorithm. Aishima et al. presented some convergence theorems of the DQDS
algorithm [18], and illustrated them with experiments. Besides, they gave the
specific steps of shift strategy of the DQDS algorithm, and rigorously proved
that this strategy has asymptotic cubic convergence [19]. Aishima et al. [20, 21]
introduced its corresponding convergence rate theorem for the DQDS algorithm
under different shift strategies. Furthermore, Aishima et al. [22] proposed a
new DQDS method in subsequent work, and the asymptotic super quadratic
convergence was realized. Li et al. [23] also improved DQDS, and they designed
a novel deflation strategy that can significantly improve the calculation speed
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of the DQDS algorithm. LAPACK-3.4.1 has adopted this strategy to enhance
the DQDS algorithm.

Nakatsukasa et al. [24] combined DQDS with aggressive early deflation
technology, which greatly decreases the running cost of DQDS. Araki et al. [25]
combined DQDS and OQDS (orthogonal QD with shift) to calculate the col-
umn space of the rectangular matrix, and used the DQDS method to study the
distribution of all singular values to determine the numerical rank. Ferreira and
Parlett et al. [26] proposed a new DQDS algorithm to calculate the eigenvalues
of the real tridiagonal matrix, and presented experiments to show that the new
transform triple DQDS is faster. Many researchers [27] applied the Kato-Temple
inequality to the matrix eigenvalues, and then proposed a new shift strategy.
However, most of these studies are aimed at shift strategy and convergence anal-
ysis. It does not consider the rounding errors’ accumulation in the calculation,
resulting in a decrease in the accuracy of the calculation, and the problem of
excessive CPU time when calculating large-scale matrices. Previous work [28]
only considered rounding errors in DQDS algorithms, and just proposed high-
precision DQDS algorithms. In this paper, we present the error analysis of the
inner loop of the DQDS and HDQDS algorithms, implement the DQDS algo-
rithm in double-double format, and propose an MDQDS algorithm based on
the idea of mixed-precision to reduce overhead while ensuring global accuracy.
We further propose a generic precision-adjustable computational framework for
solving singular values.

2.2. EFT Technique

In floating point arithmetic systems, rounding errors will inevitably reduce
the numerical algorithms’ accuracy, so increasing the algorithms’ accuracy is
a reliable method to improve the quality of numerical simulations. Error-free
transformations (EFT) were proposed by Ogita et al. [10] in 2005, and it is a
powerful mathematical strategy to reduce rounding errors in numerical calcula-
tions. The key idea is to return the rounding error of operations to the original
calculation result through cumulative compensation. Du et al. [8] proposed a
Compensated QD algorithm-COMPQD algorithm based on EFT. The COM-
PQD algorithm records the error generated by each step of the operation and
compensates for the original result to make the result more accurate.

For matrix multiplication, fusion with EFT can develop reliable numerical
algorithms. Ozaki [9] described it in detail and analyzed the rounding error.
Barrio et al. [29] designed ORTHOPOLY software using EFT techniques to
effectively and accurately evaluate a series of classical orthogonal polynomials
and their derivatives. Graillat et al. [12] verified the compensated algorithms
by using stochastic arithmetic, and then proved the accuracy of the compen-
sated algorithm using EFT. Jiang et al. [11] proposed the compensated Horner
derivative algorithm, which is used to accurately evaluate the k-th derivative
of a polynomial in power basis. And the accuracy of the algorithm is proved
by experiments. In this paper, we design a high-precision DQDS algorithm,
which combines the DQDS algorithm with EFT. It improves the accuracy of
calculation by reducing the influence of rounding errors.

4



2.3. Mixed-precision Strategy

The reason single-precision computations are faster than double-precision
computations is that lower precision can perform more operations per second
on traditional processors [30]. Some researchers switch the algorithm to single
precision in order to speed up, and most of this operation is feasible. But in
some cases, single-precision computations can lead to non-convergence. Thus
mixed-precision is developed. Mixed-precision is to use different precisions in
different parts of an algorithm according to requirements, such as half-precision,
single-precision, double-precision, which improve the algorithm’s performance
by combining data formats [31]. For example, mixed-precision versions of linear
algebra algorithms are greatly accelerated in scientific computing [13]. The
GMRES algorithm for solving sparse systems of linear equations utilizes mixed-
precision ideas to achieve over 8% speedup [14].

Basic Linear Algebra Subroutines (BLAS) design a mixed-precision version,
which implements more accurate and faster algorithms, and it is a typical mixed-
precision library [32]. Yamazaki et al. [33] designed a mixed-precision version
of the Cholesky QR algorithm, improving numerical reliability in practical ap-
plications. Higham et al. [34] developed the multi-precision Schur–Parlett algo-
rithm, which has the same reliability as the original algorithm. Sun et al. [15]
designed the mixed-precision linear solver, which improved the overall perfor-
mance by changing the data format. Mixed-precision is widely used in many
scenarios, such as reducing training time in artificial intelligence [35]. Based on
this, we propose a mixed-precision DQDS algorithm, which is accelerated by
the potential performance advantages of mixed-precision.

3. Preliminaries

In this section, we introduce the basics of the DQDS algorithm and related
algorithms of the rounding errors and EFT techniques.

3.1. DQDS Algorithm: Basics

The DQDS algorithm, proposed by Fernando and Parlett in 1994 [16], can
efficiently calculate the bidiagonal matrices’ singular values and is also used
to calculate the tridiagonal matrices’ eigenvalues. The shift strategy of the
DQDS algorithm has been deeply studied in the literature, so it has a faster
convergence speed when used for large-scale matrices. Parlett and Marques
described in detail how to efficiently implement the DQDS algorithm in Ref.
[17]. At this time, DQDS has been included in the LAPACK library as an
open-source algorithm and is widely used as a DLASQ routine.

Now, we will briefly introduce the DQDS algorithm. Firstly, we have to
transform the input matrix A to the upper bidiagonal matrix B by successively
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applying the known Householder transforms before executing the DQDS algo-
rithm, obtaining

B =


b1 b2

b3
. . .
. . . b2k−2

b2k−1

 . (1)

In the following we assume that we begin the algorithm from the upper bidi-
agonal matrix B and that all non-zero elements in B are positive, bt > 0 for
t = 1, 2, ..., 2k − 1.

The DQDS algorithm [17] adds variable dk compared with QDS (orthogonal
QD) [36], and dk(k = 1, .., n− 1) > 0, but it has the advantage of compensation
because all variables in DQDS must be non-negative numbers.

In order to better describe the DQDS algorithm, we use the following format
for the upper bidiagonal matrix

B(n) =



√
q
(n)
1

√
e
(n)
1√
q
(n)
2

. . .

. . .
√

e
(n)
m−1√
q
(n)
m

 (2)

According to the Cholesky transform with shift, the DQDS algorithm can
be written as:

(B(n+1))TB(n+1) = B(n)(B(n))T − s(n)I, (3)

where s(n) ≥ 0 (n = 0, 1, 2, ...,) is the shift, and I is the unit matrix. The specific
process of the DQDS algorithm is shown in Algorithm 1 [17].

Algorithm 1 The DQDS Algorithm

Input:
B(n) (n = 0, 1, 2, 3, ...)

Output:

q
(n)
i (i = 1, 2, 3, ...,m)

e
(n)
i (i = 1, 2, 3, ...,m− 1)

1: Initialization:
q
(0)
k = (b2k−1)

2 (k = 1, 2, 3, ...,m)

e
(0)
k = (b2k)

2 (k = 1, 2, 3, ...,m− 1)
2: for n = 0, 1, 2, 3, ... do
3: choose shift s(n)(≥ 0)

4: d
(n+1)
1 = q

(n)
1 − s(n)

5: for k = 1, 2, 3, ...m− 1 do
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6: q
(n+1)
k = d

(n+1)
k + e

(n)
k

7: e
(n+1)
k = e

(n)
k q

(n)
k+1/q

(n+1)
k

8: d
(n+1)
k+1 = (d

(n+1)
k q

(n)
k+1/q

(n+1)
k )− s(n)

9: end for
10: q

(n+1)
m = d

(n+1)
m

11: if convergence criterion STOP
12: end for

When the convergence criterion set by the experiment is suitable, the outer

loop will end, such as |e(n)m−1| ≤ ξ, where ξ>0 is a constant. The diagonal
elements of the matrix are arranged in descending order of its singular values
when the DQDS algorithm ends the loop. DQDS is similar to the Cholesky LR
method with shifts when applied to tridiagonal symmetric matrices. It should
be noted that the DQDS algorithm shows excellent performance in calculating
singular values and has other interesting applications. Different shift strategies
can be selected according to different problems, and in that case, the convergence
rate will also change. Ref.[20](Chapter 4) comprehensively introduces various
shift strategies and their convergence rate.

3.2. Rounding Errors and EFT

The rounding error is usually expressed as the difference between the ap-
proximate calculated values during floating point operations and exact values.
It will cause the unreliability of the target value calculation result. Especially
when calculating massive data, the accumulation of a large number of round-
ing errors will cause the calculation result to deviate from the expected result.
However, rounding errors in floating point operations are unavoidable. Recently,
Yang et al. [37] conducted a detailed analysis of the mixed-precision algorithm’s
rounding error, and developed a mixed-precision version of the Householder QR
algorithm. Therefore, a large number of scholars have been studying rounding
errors.

As the accuracy requirements for floating point calculations are getting
higher and higher, the IEEE organization expanded the IEEE-754(1985) stan-
dard in 2008 to address the problem of inaccurate computing results caused by
a large number of rounding errors. They supplemented quadruple precision (128
bit) and decimal arithmetic to meet current computing needs, thus forming a
new set of arithmetic standards IEEE-754 (2008).

A standard floating point calculation model in floating point operations [38]
is:

f1 op f2 = fl(f1 ◦ f2) = (f1 ◦ f2)(1 + ε1) = (f1 ◦ f2)/(1 + ε2), (4)

where ◦ ∈ {+,−,×,÷} , |ε1|, |ε2| ≤ u, f1, f2 ∈ R, op represents the addition,
subtraction, multiplication, and division operations inside the computer during
the execution of floating point calculations, fl is expressed as a floating point
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operation. u is the unit roundoff. We define [38]

<N> := 1 + θN =

N∏
n=1

(1 + εn)
ρn , (5)

where |εn| ≤ u, ρn = ±1,

|θn| ≤ γn :=
nu

(1− nu)
, (6)

for n = 1, 2, . . . , N and nu < 1.
Under the current working accuracy, the design of a compensated algorithm

can effectively reduce the rounding error. EFT is the core tool of our compen-
sated algorithm. Suppose now floating point numbers (f1, f2) ∈ F (F denotes
the floating point numbers set), ◦ ∈ {+,−,×}, and z = fl(f1◦f2) ∈ F. Also, we
assume rounding to nearest without overflow and underflow. Then the definition
of EFT is:

(f1 ◦ f2) = z + err, (7)

where z is the best floating point approximation of the computing result, and
err is the exact rounding error.

Now we describe the basic EFT algorithms for addition, product and division
of floating point numbers. Suppose (f1, f2) ∈ F, the sum of f1 and f2 is denoted
s, and the rounding error is s err. EFT of the sum of two floating point numbers
are:

f1 ⊕ f2 = s,

f1 ⊖ s⊕ f2 = s err,
(8)

and

f1 ⊕ f2 = s,

t = s⊖ f1,

s err = (f1 ⊖ (s⊖ t))⊕ (f2 ⊖ t).

(9)

Eqns.(8) and (9) are the FastTwoSum algorithm [39] and the TwoSum algorithm
[40], respectively. We remark that the FastTwoSum algorithm requires |f1| ≥
|f2|.

The TwoProd algorithm [39] is the EFT of two floating-point numbers’ prod-
ucts. The Fused-Multiply-and-Add (FMA) instruction [41] is almost as fast in
execution time as multiplication or addition, improving numerical precision by
reducing rounding. Hence, we obtain the TwoProdFMA algorithm by combining
FMA with the TwoProd algorithm, that is:

f1 ⊗ f2 = p,

FMA(f1, f2,−p) = p err.
(10)
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with (f1, f2) ∈ F, p represent the result of product of floating point numbers,
p err stands for rounding error.

The DivRem algorithm [42, 43] is the EFT of the division of two floating
point numbers. Similarly, the input to the algorithm is (f1, f2) ∈ F, the output
is r and r err, r is the result of the division of floating point numbers, r err
stands for rounding error,

f1 ⊘ f2 = r,

r ⊗ f2 = p,

FMA(r, f2,−p) = p err,

(f1 ⊖ p)⊖ p err = r err.

(11)

4. Numerical Framework

We propose a precision-adjustable computational framework for solving sin-
gular values. First, we introduce the overall design of our proposed framework
in Section 4.1, and then we take DQDS as an example to introduce the high-
precision DQDS algorithm in Section 4.2, the double-double version in Section
4.3, and the mixed-precision DQDS algorithm in Sections 4.4, respectively.

4.1. Overview of the PACF

This section describes a multi-mode framework in which users can choose dif-
ferent algorithms to solve singular values according to different precision needs.
The core strategy of our framework is that the same algorithm contains three
modes: original mode, high-precision mode, and mixed-precision mode. The
original version of the algorithm is the original mode. The high-precision mode
is a reliable numerical algorithm designed by us using EFT technology to reduce
the accumulation of rounding errors. The mixed-precision mode is an efficient
numerical algorithm designed by carefully combining the data format using the
mixed-precision idea. As shown in Fig.1, our framework can add different solv-
ing algorithms for different types of problems. According to our idea, the newly
added algorithms can be transformed into three precision modes, so our frame-
work is universal and extensible.

Fig.1 shows the flow of the PACF framework. Firstly, we input the matrix
to be solved and select the corresponding algorithm according to the matrix
type. Then we select the corresponding mode according to your precision needs.
For example, you have to choose a high-precision algorithm if you need high
calculation accuracy, and to choose a mixed-precision algorithm if you need a
fast calculation speed. Finally, output the calculation result.

Now, we introduce the DQDS algorithm for solving singular values of upper
bidiagonal matrices as an example. In literature, there are plenty of studies on
the shift strategy of the DQDS algorithm. On the contrary, rounding errors
have generally been ignored in the solution procedure as the DQDS algorithm
is considered stable. However, it can lead to slightly inaccurate solution results
because rounding errors are unavoidable in floating point calculations for very
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Figure 1: Overview of the PACF.

large matrices. One of our main goals is to develop roundoff accurate solutions,
and not just stable ones. The EFT technique we use can effectively reduce the
accumulation of rounding errors. It compensates the rounding error generated
at each step of the DQDS algorithm, and it allows us to design a reliable numeri-
cal algorithm, named HDQDS. We describe the high-precision DQDS algorithm
(HDQDS) in detail in Section 4.2. Moreover, we take into account the per-
formance differences of computations in different precision formats, and utilize
the potential performance advantages of mixed precision to improve the perfor-
mance of numerical algorithms. Numerical methods that use mixed-precision
ideas generally use higher precision (uhigh) in the key calculation steps of the
algorithm, and lower precision (ulow) in other parts. Therefore, we reduce the
overall computational overhead by carefully combining the data formats with
utilizing the speedup of the lower precision format. We developed an efficient
numerical algorithm, named MDQDS. Section 4.4 details the mixed-precision
DQDS algorithm. Whether it is a high-precision DQDS algorithm or a mixed-
precision DQDS algorithm, their inputs and outputs have the same format as
the original DQDS, which is double precision.

4.2. A High-precision DQDS Algorithm

In this section, we introduce a high-precision DQDS algorithm (HDQDS),
which can also be called a compensated DQDS algorithm. We present the
notations in Table 1, also used in the error analysis, for a better understanding
of this paper.
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Table 1: Notations used on the different DQDS algorithms and in the error analysis.

Notations Description
b2k−1 Element in a bidiagonal matrix

q
(n)
k The exact value

q̃
(n)
k Result with perturbed inputs in real arithmetic

q̂
(n)
m Result of computation in floating point operations

ςq̂
(n)
k The compensated term of q̂

(n)
k

δq̃
(n)
k The perturbation term of q̃

(n)
k

ϱq̂
(n)
k The approximate rounding errors of q̂

(n)
k

ϱq̃
(n)
k The approximate perturbation term for q̃

(n)
k

ςϱq̂
(n)
k The compensated term of ϱq̂

(n)
k

s(n) The shift value of each iteration of the algorithm

First of all, we perform some preliminary steps for the initialization of the
DQDS algorithm, as the initial data is supposed to be calculated previously, and
it is an approximate value rather than an exact one due to the rounding errors.
We utilize the TwoProdFMA algorithm to make the original error be discarded to
enter in the subsequent calculations.

Next, we start to consider each inner loop of DQDS, record the rounding
error generated by each step of the operation through EFT, and then compen-
sate back to the original calculation result. Then, a more accurate value will be
obtained.

For the first inner loop

[d̂
(n+1)
1 , ϱd̂

(n+1)
1 ] = TwoSum(q̂

(n)
1 ,−ŝ(n)), (12)

we can deduce the compensated term ϱd̂
(n+1)
1 of d̂

(n+1)
1

ϱd̂
(n+1)
1 = ϱd̂

(n+1)
1 ⊕ ϱq̂

(n)
1 . (13)

Now, we can use the FastTwoSum algorithm to update d̂
(n+1)
1 and ϱd̂

(n+1)
1 ,

and so the updated d̂
(n+1)
1 is more accurate than before

[d̂
(n+1)
1 , ϱd̂

(n+1)
1 ] = FastTwoSum(d̂

(n+1)
1 , ϱd̂

(n+1)
1 ). (14)

For the second inner loop

[q̂
(n+1)
k , ν1] = TwoSum(d̂

(n+1)
k , ê

(n)
k ),

[t, ν2] = TwoProdFMA(ê
(n)
k , q̂

(n)
k+1),

[ê
(n+1)
k , ν3] = DivRem(t, q̂

(n+1)
k ).

(15)

And so, we can get the approximate compensation term ϱq̂
(n+1)
k of q̂

(n+1)
k

ϱq̂
(n+1)
k = ϱq̂

(n+1)
k ⊕ ϱd̂

(n+1)
k ⊕ ϱê

(n)
k . (16)
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When calculating ϱê
(n+1)
k with perturbed input, according to the formula, we

obtain

ϱê
(n+1)
k =(ϱê

(n)
k ⊗ q̂

(n)
k+1 ⊕ ê

(n)
k ⊗ ϱq̂

(n)
k+1 ⊖ ϱq̂

(n+1)
k ⊗ ê

(n+1)
k ⊖ ν2 ⊗ ê

(n)
k

⊖ ν3 ⊗ q̂
(n+1)
k )⊘ q̂

(n+1)
k .

(17)

The calculation process of d̂
(n+1)
k should be divided into three steps, the first

step is

[t, ν5] = TwoProdFMA(d̂
(n+1)
k , q̂

(n)
k+1),

[µ̂, ν6] = DivRem(t, q̂
(n+1)
k ).

(18)

Then, computing the compensated term in (12), we obtain

ϱµ̂ =(ϱd̂
(n+1)
k ⊗ q̂

(n)
k+1 ⊕ d̂

(n+1)
k ⊗ ϱq̂

(n)
k+1 ⊖ ϱq̂

(n+1)
k ⊗ µ̂⊖ ν5 ⊗ d̂

(n+1)
k

⊖ ν6 ⊗ q̂
(n+1)
k )⊖ q̂

(n+1)
k .

(19)

We update µ and ϱµ̂ by using the FastTwoSum algorithm, and then we use the

TwoSum algorithm to calculate d
(n+1)
k+1 , that is

[d̂
(n+1)
k+1 , ϱd̂

(n+1)
k+1 ] = TwoSum(µ,−ŝ(n)). (20)

Finally, the compensated term we obtain is

ϱd̂
(n+1)
k+1 = ϱd̂

(n+1)
k+1 ⊕ ϱµ̂. (21)

For each step of the DQDS algorithm’s inner loop, we utilize the FastTwoSum
algorithm to update the calculated results and compensated terms. The updated
results are more accurate than the original result. Therefore, the input of the
high-precision DQDS has not changed compared with the original DQDS. How-
ever, the intermediate calculation process uses EFT to reduce rounding errors
and make the final result more accurate. Note that we do not compute rounding
errors for the shift s to make our framework more extensible. Users can choose
the shift strategy we provide according to the problem to be solved or add it
themselves. We propose a new high-precision DQDS algorithm based on the
above discussion, as shown in Algorithm 2.

Algorithm 2 The High-precision DQDS Algorithm (HDQDS)

Input:
B̂(n) (n = 0, 1, 2, 3, ...)

Output:

q̂
(n)
i (i = 1, 2, 3, ...,m)

ê
(n)
i (i = 1, 2, 3, ...,m− 1)
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1: Initialization:
[q̂

(0)
k , ϱq̂

(0)
k ] = TwoProdFMA(̂b2k−1, b̂2k−1) (k = 1, 2, 3, ...,m)

[ê
(0)
k , ϱê

(0)
k ] = TwoProdFMA(̂b2k, b̂2k) (k = 1, 2, 3, ...,m− 1)

2: for n = 0, 1, 2, 3, ... do
3: choose shift ŝ(n)(≥ 0)

4: [d̂
(n+1)
1 , dt] = TwoSum(q̂

(n)
1 ,−ŝ(n))

5: ϱd̂
(n+1)
1 = dt+ ϱq̂

(n)
1

6: [d̂
(n+1)
1 , ϱd̂

(n+1)
1 ] =FastTwoSum(d̂

(n+1)
1 , ϱd̂

(n+1)
1 )

7: for k = 1, 2, 3, ...m− 1 do

8: [q̂
(n+1)
k , ν1] = TwoSum(d̂

(n+1)
k , ê

(n)
k )

9: ϱq̂
(n+1)
k = ν1 ⊕ ϱd̂

(n+1)
k ⊕ ϱê

(n)
k

10: [q̂
(n+1)
k , ϱq̂

(n+1)
k ] = FastTwoSum (q̂

(n+1)
k , ϱq̂

(n+1)
k )

11: [t, ν2] = TwoProdFMA(ê
(n)
k , q̂

(n)
k+1)

12: [ê
(n+1)
k , ν3] = DivRem(t, q̂

(n+1)
k )

13: ϱê
(n+1)
k = (ϱê

(n)
k ⊗ q̂

(n)
k+1 ⊕ ê

(n)
k ⊗ ϱq̂

(n)
k+1 ⊖ ϱq̂

(n+1)
k ⊗ ê

(n+1)
k ⊖ ν2 ⊗ ê

(n)
k

⊖ν3 ⊗ q̂
(n+1)
k )⊘ q̂

(n+1)
k

14: [ê
(n+1)
k , ϱê

(n+1)
k ] = FastTwoSum(ê

(n+1)
k , ϱê

(n+1)
k )

15: [t, ν5] = TwoProdFMA(d̂
(n+1)
k , q̂

(n)
k+1)

16: [µ̂, ν6] = DivRem(t, q̂
(n+1)
k )

17: ϱµ̂ = (ϱd̂
(n+1)
k ⊗ q̂

(n)
k+1 ⊕ d̂

(n+1)
k ⊗ ϱq̂

(n)
k+1 ⊖ ϱq̂

(n+1)
k ⊗ µ̂⊖ ν5 ⊗ d̂

(n+1)
k

⊖ν6 ⊗ q̂
(n+1)
k )⊖ q̂

(n+1)
k

18: [µ̂, ϱµ̂] = FastTwoSum(µ̂, ϱµ̂)

19: [d̂
(n+1)
k+1 , ν4] = TwoSum(µ̂,−ŝ(n))

20: ϱd̂
(n+1)
k+1 = ν4 ⊕ ϱµ̂

21: [d̂
(n+1)
k+1 , ϱd̂

(n+1)
k+1 ] = FastTwoSum(d̂

(n+1)
k+1 , ϱd̂

(n+1)
k+1 )

22: end for
23: q̂

(n+1)
m = d̂

(n+1)
m

24: if convergence criterion STOP
25: end for

4.3. A Double-double Format DQDS Algorithm

To better explain the accuracy of the HDQDS algorithm, we implement
a double-double format DQDS algorithm, named DD DQDS algorithm, and
it is presented in Algorithm 3. The basic algorithms of double-double format
(prod dd dd, add dd dd, Div dd dd) used in DD DQDS are detailed in Refs.[32,
42, 44, 45, 46]. Moreover, the introduction of this extra precision algorithm
allows us to compare the accuracy and running time of DQDS, HDQDS, and
DD DQDS algorithms (see Section 6.2).

Algorithm 3 The DD DQDS Algorithm

Input:
Bh(n), Bl(n) (n = 0, 1, 2, 3, ...)
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Output:

qh
(n)
i (i = 1, 2, 3, ...,m)

eh
(n)
i (i = 1, 2, 3, ...,m− 1)

1: Initialization:
[qh

(0)
k , ql

(0)
k ] = prod dd dd(bh2k−1, bl2k−1, bh2k−1, bl2k−1) (k = 1, 2, 3, ...,m)

[eh
(0)
k , el

(0)
k ] = prod dd dd(bh2k, bl2k, bh2k, bl2k) (k = 1, 2, 3, ...,m− 1)

2: for n = 0, 1, 2, 3, ... do
3: choose shift s(n)(≥ 0)

4: [dh
(n+1)
1 , dl

(n+1)
1 ] = add dd dd(qh

(n)
1 , ql

(n)
1 ,−sh(n),−sl(n))

5: for k = 1, 2, 3, ...m− 1 do

6: [qh
(n+1)
k , ql

(n+1)
k ] = add dd dd(dh

(n+1)
k , dl

(n+1)
k , eh

(n)
k , el

(n)
k )

7: [vh, vl] = Div dd dd(qh
(n)
k+1, ql

(n)
k+1, qh

(n+1)
k , ql

(n+1)
k )

8: [eh
(n+1)
k , el

(n+1)
k ] = prod dd dd(eh

(n)
k , el

(n)
k , vh, vl)

9: [temph, templ] = prod dd dd(dh
(n+1)
k , dl

(n+1)
k , vh, vl)

10: [dh
(n+1)
k+1 , dl

(n+1)
k+1 ] = add dd dd(temph, templ,−sh(n),−sl(n))

11: end for
12: qh

(n+1)
m = dh

(n+1)
m

ql
(n+1)
m = dl

(n+1)
m

13: if convergence criterion STOP
14: end for

4.4. A Mixed-precision DQDS Algorithm

In this section, we introduce the mixed-precision DQDS algorithm for fast
solving singular values in Algorithm 4. The core idea of mixed-precision al-
gorithms is iterative refinement, which efficiently utilizes available computing
power by carefully combining data formats.

The transmission, processing, and storage of data in the computer are bi-
nary. In the IEEE-754 standard, data in double-precision format occupies 64
bits, and single-precision format is 32 bits. Fig.2 shows the representation of π in
single- and double-precision floating point formats. Although double-precision
arithmetic will compute more accurate results, 64-bit floating point operations
(double) are typically half as fast as 32-bit floating point operations (float). To
effectively take advantage of the performance differences of calculations under
different precision formats, we adopt a mixed data format by using different
floating point formats in different operations to ensure accuracy while reducing
the overall overhead and accelerating calculation. We demonstrate the effective-
ness of our MDQDS algorithm by conducting experiments on a supercomputing
platform. In addition, we uniformly compute the shift s with double precision to
make our framework extensible. Users can choose the shift strategy we provide
according to the problem or add it.

Our strategy is to use full-precision in the algorithm’s key computational
steps and reduced-precision for other parts. In this article, uhigh represents
double-precision computing, ulow represents single-precision computing, and the

14



Figure 2: Difference between single- and double-precision floating point formats of π.

subscripts high and low mean that the precision format of the data is double and
float, respectively.

In Algorithm 4 we detail the MDQDS algorithm. Specifically, the addi-
tion and subtraction of two floating point numbers are calculated using double-
precision, and the multiplication and division of two floating point numbers
are calculated using single-precision, but the result is stored in double-precision
format. For example, we use double-precision regardless of the calculation or
storage in lines 4 and 6, but for line 7 we use single-precision when calculating
and store the result in double precision.

Algorithm 4 The MDQDS Algorithm

Input:
B(n) (n = 0, 1, 2, 3, ...)

Output:

q
(n)
i (i = 1, 2, 3, ...,m)

e
(n)
i (i = 1, 2, 3, ...,m− 1)

1: Initialization:
(q

(0)
k )high = ((b2k−1)low)

2 (k = 1, 2, 3, ...,m)

(e
(0)
k )high = ((b2k)low)

2 (k = 1, 2, 3, ...,m− 1)
2: for n = 0, 1, 2, 3, ... do
3: choose shift (s(n))high(≥ 0)

4: (d
(n+1)
1 )high = (q

(n)
1 )high − (s(n))high

5: for k = 1, 2, 3, ...m− 1 do

6: (q
(n+1)
k )high = (d

(n+1)
k )high + (e

(n)
k )high

7: (e
(n+1)
k )high = (e

(n)
k )low(q

(n)
k+1)low/(q

(n+1)
k )low

8: (d
(n+1)
k+1 )high = (d

(n+1)
k )low(q

(n)
k+1)low/(q

(n+1)
k )low − (s(n))high

9: end for
10: (q

(n+1)
m )high = (d

(n+1)
m )high

11: if convergence criterion STOP
12: end for
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5. Error Analysis

In this section, we present the error analysis of the inner loop of the DQDS
algorithm (see Section 5.1) and the high-precision DQDS algorithm (see Section
5.2). In order to better understand the following content, we list the meaning
of the symbols in Table 1.

5.1. Error Analysis of the DQDS Algorithm

In this subsection, we analyze the main loop of the DQDS Algorithm. In
the second inner loop of DQDS (lines 5-9 of the Algorithm 1), we discuss the
floating point inputs’ perturbations, that is

q̂
(n)
k = q

(n)
k + ςq̂

(n)
k ,

ê
(n)
k = e

(n)
k + ςê

(n)
k ,

d̂
(n)
k = d

(n)
k + ςd̂

(n)
k .

(22)

Therefore, line 6 of the algorithm (q
(n+1)
k = d

(n+1)
k + e

(n)
k ) will satisfy

q̃
(n+1)
k = d̂

(n+1)
k + ê

(n)
k , (23)

and line 7 (e
(n+1)
k = e

(n)
k q

(n)
k+1/q

(n+1)
k )

ẽ
(n+1)
k = ê

(n)
k q̂

(n)
k+1/q̂

(n+1)
k , (24)

and finally, line 8 (d
(n+1)
k+1 = d

(n+1)
k q

(n)
k+1/q

(n+1)
k − s(n))

d̃
(n+1)
k+1 = d̂

(n+1)
k q̂

(n)
k+1/q̂

(n+1)
k − ŝ(n). (25)

In Eqs.(23), (24) and (25), all the calculations are executed using real arithmetic
without rounding error. But, if all the calculations are executed in floating-point
operation, we get

fl(q̃
(n+1)
k ) = q̂

(n+1)
k = d̂

(n+1)
k ⊕ ê

(n)
k ,

f l(ẽ
(n)
k ) = ê

(n+1)
k = fl(fl(ê

(n)
k q̂

(n)
k+1)/q̂

(n+1)
k ),

f l(d̃
(n+1)
k+1 ) = d̂

(n+1)
k+1 = fl(fl(d̂

(n+1)
k q̂

(n)
k+1)/q̂

(n+1)
k )⊖ ŝ(n).

(26)

Next, we give the absolute perturbation bounds for the DQDS algorithm’s
inner loop when the input is a floating point number (22).

Lemma 1. The absolute perturbation bounds for the DQDS algorithm’s inner
loop when using real arithmetic and input floating point numbers, are given by

|δq̃(n+1)
k | ≤ |ςd̂(n+1)

k |+ |ςê(n)k |, (27)

|δẽ(n+1)
k | ≤ β

(n+1)
k , (28)
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and

|δd̃(n+1)
k+1 | ≤ λ

(n+1)
k + |ςŝ(n)|, (29)

where

β
(n+1)
k = b

(n+1)
k ×

|e(n)k ||ςq̂(n)k+1|+ |ςê(n)k ||q(n)k+1|+ |e(n+1)
k ||ςq̂(n+1)

k |+ |ςê(n)k ||ςq̂(n)k+1|

|q(n+1)
k |

, (30)

λ
(n+1)
k = b

(n+1)
k ×

|d(n+1)
k ||ςq̂(n)k+1|+ |ςd̂(n+1)

k ||q(n)k+1|+ |d(n+1)
k+1 ||ςq̂(n+1)

k |+ |ςd̂(n+1)
k ||ςq̂(n)k+1|

|q(n+1)
k |

, (31)

with

b
(n+1)
k = |

q
(n+1)
k

q
(n+1)
k + ςq̂

(n+1)
k

|, (32)

assuming q
(n+1)
k ̸= 0 and

ςq̂
(n+1)
k

q
(n+1)
k

̸= −1.

Proof 1. From (22) and (23), we get that

δq̃
(n+1)
k = ςd̂

(n+1)
k + ςê

(n)
k , (33)

which give us (27).
In a similar way, we have

δẽ
(n+1)
k =

e
(n)
k ςq̂

(n)
k+1 + ςê

(n)
k q

(n)
k+1 − e

(n+1)
k ςq̂

(n+1)
k + ςê

(n)
k ςq̂

(n)
k+1

q
(n+1)
k + ςq̂

(n+1)
k

(34)

and

δd̃
(n+1)
k+1 =

d
(n+1)
k ςq̂

(n)
k+1 + ςd̂

(n+1)
k q

(n)
k+1 + d

(n+1)
k+1 ςq̂

(n+1)
k + ςd̂

(n+1)
k ςq̂

(n)
k+1

q
(n+1)
k + ςq̂

(n+1)
k

− s(n). (35)

Therefore, we get the bound (28) and (29) if q
(n+1)
k ̸= 0 and

ςq̂
(n+1)
k

q
(n+1)
k

̸= −1, where

β
(n+1)
k and λ

(n+1)
k are defined in (30) and (31), respectively. ⊠

We now give the perturbation analysis of the DQDS algorithm, and then
we analyze the rounding error in floating-point operations. We assume that all
inputs are floating point numbers without any perturbations.

Lemma 2. Let fl(q̃
(n+1)
k ) = q̂

(n+1)
k , fl(ẽ

(n+1)
k ) = ê

(n+1)
k and fl(d̃

(n+1)
k+1 ) =

d̂
(n+1)
k+1 are calculated in floating-point operations in the inner loop of DQDS

algorithm, thus

|fl(q̃(n+1)
k )− q̃

(n+1)
k | ≤ γ2(|d̂(n+1)

k |+ |ê(n)k |), (36)
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|fl(ẽ(n+1)
k )− ẽ

(n+1)
k | ≤ γ2|ẽ(n+1)

k |, (37)

and

|fl(d̃(n+1)
k+1 )− d̃

(n+1)
k+1 | ≤ γ2|d̃(n+1)

k+1 |. (38)

Proof 2. It is obtained directly from (4) and (26). ⊠

We can deduce the rounding error of the DQDS algorithm’s inner loop in
floating point operations from Lemma 1 and 2.

Lemma 3. When the input is a perturbed floating-point number, the rounding
error bound for the inner loop of the DQDS algorithm is given by

|fl(q̃(n+1)
k )− q

(n+1)
k | ≤ γ2(|d(n+1)

k |+ |e(n)k |) + (1 + γ2)(|ςd̂(n+1)
k |+ |ςê(n)k |), (39)

|fl(ẽ(n+1)
k )− e

(n+1)
k | ≤ γ2|e(n+1)

k |+ (1 + γ2)β
(n+1)
k , (40)

and

|fl(d̃(n+1)
k+1 )− d

(n+1)
k+1 | ≤ γ2|d(n+1)

k+1 |+ (1 + γ2)(λ
(n+1)
k − |ςŝ(n)|). (41)

where β
(n+1)
k and λ

(n+1)
k are defined in (30) and (31).

Proof 3. Firstly, we have

|fl(q̃(n+1)
k )− q

(n+1)
k | ≤ |fl(q̃(n+1)

k )− q̃
(n+1)
k |+ |q̃(n+1)

k − q
(n+1)
k |. (42)

Next by (27) in Lemma 1, (36) in Lemma 2, and (22), we get

|fl(q̃(n+1)
k )− q

(n+1)
k | ≤ γ2(|d̂(n+1)

k |+ |ê(n)k |) + (|ςd̂(n+1)
k |+ |ςê(n)k |)

≤ γ2(|d(n+1)
k |+ |e(n)k |) + (1 + γ2)(|ςd̂(n+1)

k |+ |ςê(n)k |).
(43)

Finally, by (28) in Lemma 1 and (37) in Lemma 2, we have

|fl(ẽ(n+1)
k )− e

(n+1)
k | ≤ |fl(ẽ(n+1)

k )− ẽ
(n+1)
k |+ |ẽ(n+1)

k − e
(n+1)
k |

≤ γ2|e(n+1)
k |+ (1 + γ2)β

(n+1)
k ,

(44)

Similarly, by (29) in Lemma 1 and (38) in Lemma 2, we obtain

|fl(d̃(n+1)
k+1 )− d

(n+1)
k+1 | ≤ |fl(d̃(n+1)

k+1 )− d̃
(n+1)
k+1 |+ |d̃(n+1)

k+1 − d
(n+1)
k+1 |

≤ γ2|d(n+1)
k+1 |+ (1 + γ2)(λ

(n+1)
k+1 − |ςŝ(n)|).

(45)

⊠

The above results show us that the error bounds for the DQDS algorithm’s
inner loop are of order γj and/or terms multiplied by compensated terms (that
is, terms of the type ς□). Therefore, we have error bounds of order 1 in the
roundoff unit and the DQDS algorithm is stable, but for large problems, as the
number of operations increases, the terms that multiply the roundoff unit can
grow and the accuracy decreases.
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5.2. Error Analysis of the High-precision DQDS Algorithm

The below part performs error analysis on the main loop of the High-
precision DQDS algorithm (lines 7-22 of Algorithm (2)).

Firstly, we take into account the floating point inputs’ perturbations. Let

ϱq̃
(n+1)
k = ϱd̂

(n+1)
k + ϱê

(n)
k − ν1 (46)

ϱẽ
(n+1)
k =

ϱê
(n)
k q̂

(n)
k+1 + ê

(n)
k ϱq̂

(n)
k+1 − ϱq̂

(n+1)
k ê

(n+1)
k − ϱê

(n)
k ϱq̂

(n)
k+1 − ν2ê

(n)
k − ν3q̂

(n+1)
k

q̂
(n+1)
k − ϱq̂

(n+1)
k

(47)

ϱd̃
(n+1)
k+1 = temp− ϱŝ(n) − ν4, (48)

where

temp =
ϱd̂

(n+1)
k q̂

(n)
k+1 + d̂

(n+1)
k ϱq̂

(n)
k+1 − ϱq̂

(n+1)
k t̂emp− ϱd̂

(n+1)
k ϱq̂

(n)
k+1 − ν5d̂

(n+1)
k − ν6q̂

(n+1)
k

q̂
(n+1)
k − ϱq̂

(n+1)
k

. (49)

Lemma 4. The bound of ϱq̃
(n+1)
k is given by

|ϱq̃(n+1)
k − ςq̂

(n+1)
k | ≤ |ςϱd̂(n+1)

k |+ |ςϱê(n)k |. (50)

And the bounds of ϱẽ
(n+1)
k and ϱd̃

(n+1)
k+1 are given by

|ϱẽ(n+1)
k − ςê

(n+1)
k | ≤ ω

(n+1)
k , (51)

and

|ϱd̃(n+1)
k+1 − ςd̂

(n+1)
k+1 | ≤ χ

(n+1)
k + |ςϱŝ(n)|, (52)

where

ω
(n+1)
k = c

(n+1)
k ×

|e(n)k ||ςϱq̂(n)k+1|+ |ςϱê(n)k ||q(n)k+1|+ |e(n+1)
k ||ςϱq̂(n+1)

k |+ |ςϱê(n)k ||ςϱq̂(n)k+1|

|q(n+1)
k |

, (53)

χ
(n+1)
k = c

(n+1)
k ×

|d(n+1)
k ||ςϱq̂(n)k+1|+ |ςϱd̂(n+1)

k ||q(n)k+1|+ |d(n+1)
k+1 ||ςϱq̂(n+1)

k |+ |ςϱd̂(n+1)
k ||ςϱq̂(n)k+1|

|q(n+1)
k |

, (54)

with

c
(n+1)
k = |

q
(n+1)
k

q
(n+1)
k − ςϱq̂

(n+1)
k

|, (55)

assuming q
(n+1)
k ̸= 0 and q

(n+1)
k ̸= ςϱq̂

(n+1)
k .
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Proof 4. Considering the HDQDS algorithm in real operations, we have

ςq̂
(n+1)
k = ςd̂

(n+1)
k + ςê

(n)
k − ν1,

ϱq̂
(n+1)
k = ςq̂

(n+1)
k + ςϱq̂

(n+1)
k ,

(56)

and using (46), we obtain that

ϱq̃
(n+1)
k − ς̂q

(n+1)
k = ςϱd̂

(n+1)
k + ςϱê

(n)
k , (57)

that derive the bound (50). In addition, we have

ςê
(n+1)
k =

e
(n)
k ςq̂

(n)
k+1 + ςê

(n)
k q̂

(n)
k+1 − ê

(n+1)
k ςq̂

(n+1)
k − ν3ê

(n)
k − ν4q̂

(n+1)
k

q
(n+1)
k

,

ϱê
(n+1)
k = ςê

(n+1)
k + ςϱê

(n+1)
k ,

(58)

and considering (47), we get that

ϱẽ
(n+1)
k − ςê

(n+1)
k =

e
(n)
k ςϱq̂

(n)
k+1 + ςϱê

(n)
k q

(n)
k+1 − e

(n+1)
k ςϱq̂

(n+1)
k − ςϱê

(n)
k ςϱq̂

(n)
k+1

q
(n+1)
k − ςϱq̂

(n+1)
k

, (59)

which can obtain the second bound (51) directly. Identical to the above, we can
get the third bound (52). ⊠

Next, we take into account the difference between ϱq̃
(n+1)
k and ϱq̂

(n+1)
k ,

ϱẽ
(n+1)
k and ϱê

(n+1)
k , and ϱd̃

(n+1)
k+1 and ϱq̂

(n+1)
k+1 .

Lemma 5. The difference between ϱq̃
(n+1)
k and ϱq̂

(n+1)
k , ϱẽ

(n+1)
k and ϱê

(n+1)
k ,

and ϱd̃
(n+1)
k+1 and ϱq̂

(n+1)
k+1 are given by

|ϱq̂(n+1)
k − ϱq̃

(n+1)
k | ≤ γ2γ3

(
|d(n+1)

k − ςϱd̂
(n+1)
k |+ |e(n)k − ςϱê

(n)
k |

)
, (60)

|ϱê(n+1)
k − ϱẽ

(n+1)
k | ≤ γ6γ7

(|e(n)k − ςϱê
(n)
k ||q(n)k+1 − ςϱq̂

(n)
k+1|)

|q(n+1)
k − ςϱq̂

(n+1)
k |

, (61)

and

|ϱd̂(n+1)
k+1 − ϱd̃

(n+1)
k+1 | ≤ γ8γ9

(
(|d(n+1)

k − ςϱd̂
(n+1)
k ||q(n)k+1 − ςϱq̂

(n)
k+1|)

|q(n+1)
k − ςϱq̂

(n+1)
k |

+ |s(n) − ςϱŝ(n)|
)
, (62)

where ϱq̃
(n+1)
k , ϱẽ

(n+1)
k and ϱd̃

(n+1)
k+1 are defined in (46), (47) and (48), respec-

tively.
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Proof 5. We first take into account the rounding error of the approximate com-

pensation term ϱq̂
(n+1)
k for q̂

(n+1)
k , so we have

ϱq̂
(n+1)
k ≈ ϱd̂

(n+1)
k ⊕ ϱê

(n)
k ⊖ ν1, (63)

and using (4) to obtain

ϱq̂
(n+1)
k = ϱd̂

(n+1)
k (1 + θ3) + ϱê

(n)
k (1 + θ2)− ν1(1 + θ1). (64)

And from (46), we get

|ϱq̂(n+1)
k − ϱq̃

(n+1)
k | ≤ γ3(|ϱd̂(n+1)

k |+ |ϱê(n)k |+ |ν1|). (65)

Based on (15), FastTwoSum, TwoSum, TwoProd, and DivRem in Section 3.2, we
have

|ν1| ≤ u|d̂(n+1)
k + ê

(n)
k | ≤ u(|d̂(n+1)

k |+ |ê(n)k |),

|ν1| ≤ u|(d̂(n+1)
k + ê

(n)
k )(1 + θ)| ≤ γ1(|d̂(n+1)

k |+ |ê(n)k |).
(66)

We update all inputs already using FastTwoSum in the inner loop of each step
of the HDQDS algorithm. Thence, according to FastTwoSum, TwoSum, TwoProd,

and DivRem in Section 3.2, we have |ϱd̂(n+1)
k | ≤ u|d̂(n+1)

k −ϱd̂
(n+1)
k | and |ϱê(n)k | ≤

u|ê(n)k − ϱê
(n)
k |, where ϱd̂

(n+1)
k and ϱê

(n)
k are the updated value. Therefore, from

u+ γ1 ≤ γ2, we get that

|ϱq̂(n+1)
k − ϱq̃

(n+1)
k | ≤ γ3

{
u
(
|d̂(n+1)

k − ϱd̂
(n+1)
k |+ |ê(n)k − ϱê

(n)
k |

)
+ γ1

(
|d̂(n+1)

k

− ϱd̂
(n+1)
k |+ |ê(n)k − ϱê

(n)
k |

)}
≤ γ2γ3

(
|d(n+1)

k − ςϱd̂
(n+1)
k |+ |e(n)k − ςϱê

(n)
k |

)
.

(67)

We now discuss the difference between ϱê
(n+1)
k and ϱẽ

(n+1)
k . According to

(58), we obtain

ϱê
(n+1)
k ≈

ê
(n)
k ⊗ ϱq̂

(n)
k+1 ⊕ ϱê

(n)
k ⊗ q̂

(n)
k+1 ⊖ ê

(n+1)
k ⊗ ϱq̂

(n+1)
k ⊖ ν3 ⊗ ê

(n)
k ⊖ ν4 ⊗ q̂

(n+1)
k

q̂
(n+1)
k

, (68)

and assuming that all inputs are updated with FastTwoSum

q̂
(n+1)
k = q̂

(n+1)
k ⊖ ϱq̃

(n+1)
k = (q̂

(n+1)
k − ϱq̃

(n+1)
k )(1 + θ1). (69)

From this it can obtain that

ϱê
(n+1)
k = [ê

(n)
k ϱq̂

(n)
k+1(1 + θ6) + ϱê

(n)
k q̂

(n)
k+1(1 + θ6)− ê

(n+1)
k ϱq̂

(n+1)
k (1 + θ5)

−ν3ê
(n)
k (1 + θ4)− ν4q̂

(n+1)
k (1 + θ3)]/(q̂

(n+1)
k − ϱq̂

(n+1)
k ).

(70)

21



Thus, from (47), we get

|ϱê(n+1)
k − ϱẽ

(n+1)
k | ≤ γ6(

|ê(n)k ||ϱq̂(n)k+1|+ |ϱê(n)k ||q̂(n)k+1|+ |ê(n+1)
k ||ϱq̂(n+1)

k |

|q̂(n+1)
k − ϱq̂

(n+1)
k |

−
|ν3||ê(n)k |

|q̂(n+1)
k − ϱq̂

(n+1)
k |

−
|ν4||q̂(n+1)

k |
|q̂(n+1)

k − ϱq̂
(n+1)
k |

) +
|ϱê(n)k ||ϱq̂(n)k+1|

|q̂(n+1)
k − ϱq̂

(n+1)
k |

.

(71)

Here, we do not consider the update of the output ê
(n+1)
k . Therefore, we obtain

that

ê
(n+1)
k = ê

(n)
k ⊗ q̂

(n)
k+1 ⊘ q̂

(n+1)
k (1 + θ2) ≤ ê

(n)
k × q̂

(n)
k+1/q̂

(n+1)
k (1 + γ2). (72)

Likewise, according to FastTwoSum, TwoSum, TwoProd, and DivRem in Section

3.2, we have |ν3| ≤ u|q̂(n)k+1|, |ν4| ≤ u|ê(n)k+1|, |ϱê(n+1)
k | ≤ u|ê(n+1)

k − ϱê
(n+1)
k |,

|ϱq̂(n)k+1| ≤ u|q̂(n)k+1−ϱq̂
(n)
k+1|, |ê

(n+1)
k | ≤ 1

1−u |ê
(n+1)
k −ϱê

(n+1)
k |, |q̂(n)k+1| ≤

1
1−u |q̂

(n)
k+1−

ϱq̂
(n)
k+1|. From (72), we also obtain |ê(n+1)

k ||q̂(n+1)
k | ≤ (1 + γ2)|ê(n)k ||q̂(n)k+1|.

Finally, taking into account

e
(n+1)
k − ςϱê

(n+1)
k = ê

(n+1)
k − ϱê

(n+1)
k

(73)

and (71), with γ5γ6 + γ2
1 ≤ γ6γ7, we get

|ϱê(n+1)
k − ϱẽ

(n+1)
k | ≤ γ6

(
γ5 ×

|e(n)k − ςϱê
(n)
k ||q(n)k+1 − ςϱq̂

(n)
k+1|

|q̂(n+1)
k − ϱq̂

(n+1)
k |

)

+ γ2
1

|e(n)k − ςϱê
(n)
k ||q(n)k+1 − ςϱq̂

(n)
k+1|

|q̂(n+1)
k − ϱq̂

(n+1)
k |

≤ γ6γ7

( |e(n)k − ςϱê
(n)
k ||q(n)k+1 − ςϱq̂

(n)
k+1|

|q̂(n+1)
k − ϱq̂

(n+1)
k |

)
,

(74)

which is the second bound.
Similarly, from (48), we get

|ϱd̂(n+1)
k+1 − ϱd̃

(n+1)
k+1 | ≤ γ8γ9

(
(|d(n+1)

k − ςϱd̂
(n+1)
k ||q(n)k+1 − ςϱq̂

(n)
k+1|)

|q(n+1)
k − ςϱq̂

(n+1)
k |

+ |s(n) − ςϱŝ(n)|
)
. (75)

⊠

Next, we introduce the rounding error bounds with perturbed input.

Lemma 6. The rounding error bounds for the HDQDS algorithm’s inner loop
with perturbed input, are given by

|ϱq̂(n+1)
k − ςq̂

(n+1)
k | ≤ γ3γ4(|d(n+1)

k |+ |e(n)k |) + (1 + γ3γ4)(|ςϱd̂(n+1)
k |+ ςϱê

(n)
k |), (76)
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|ϱê(n+1)
k − ςê

(n+1)
k | ≤ γ6γ7c

(n+1)
k |e(n+1)

k |+ (1 + γ6γ7)ω
(n+1)
k , (77)

and

|ϱd̂(n+1)
k+1 − ςd̂

(n+1)

k+1 | ≤ γ8γ9c
(n+1)
k |d(n+1)

k+1 |+ (1 + γ8γ9)χ
(n+1)
k , (78)

where ω
(n+1)
k , χ

(n+1)
k and c

(n+1)
k are defined in (53), (54) and (55), respectively.

Proof 6. Taking into account (56) and (58), we have

|ϱq̂(n+1)
k − ςq̂

(n+1)
k | ≤ |ϱq̂(n+1)

k − ϱq̃
(n+1)
k |+ |ϱq̃(n+1)

k − q
(n+1)
k | (79)

and from (50) in Lemma 4 and (60) in Lemma 5, we obtain (76).
Then, we get

|ϱê(n+1)
k − ςê

(n+1)
k | ≤ |ϱê(n+1)

k − ϱẽ
(n+1)
k |+ |ϱẽ(n+1)

k − e
(n+1)
k | (80)

and (81) in Lemma 5, we derive that

|ϱê(n+1)
k − ϱẽ

(n+1)
k | ≤ c

(n+1)
k × γ6γ7

(
|e(n+1)

k |+
(|e(n)k ||ςϱq̂(n)k+1|+ |ςϱê(n)k ||q(n)k+1|+ |ςϱq̂(n)k+1||ςϱê

(n)
k |)

|q(n+1)
k |

)
, (81)

with q
(n+1)
k ̸= 0 and

ςϱq̂
(n+1)
k

q
(n+1)
k

̸= 1 . Hence, considering (62) in Lemma 5, we can

obtain the second rounding error bound (77). Finally, we use the same idea to
obtain (78). ⊠

We remark that in Lemma 6 the error bounds for the HDQDS algorithm’s
inner loop have terms of order γ6γ7, and/or terms with compensated approxi-
mated terms (terms of type ςϱ□). So, we have bounds of order greater than one
in the roundoff unit, giving more accurate results than the ones in Lemma 3.
Therefore, from the error bounds we expect to maintain full precision (that is,
16 digits of precision) up to extremely large problems.

6. Experimental Studies

The following part comprehensively evaluates the performance of our frame-
work. First, we introduce the configuration of the experimental platform (in
Section 6.1), and then describe the experimental performance (Sections 6.2 and
6.3).

6.1. Experiment Platform

We have implemented all the algorithms in this work inMatlab and C. And
we test the effectiveness of our framework on Intel, ARM, and AMD processors.
All numerical experiments in this paper are carried out under the IEEE-754
standard. Moreover, the data used in the calculations are the floating point
numbers. In this paper, we conduct experiments on the Windows system and
TianHe supercomputing platform in Changsha Center. The hardware configu-
ration details are shown in Table 2.
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Table 2: Configuration Details

Name Parameters Description
Windows Core i7-10510U CPU @2.30 GHz
TianHe Two Intel Xeon Westmere EP @2.50GHz, 12 cores, 48GB

memory, CPU peak 140.64 GFlops

6.2. Performance Evaluation of High-Precision DQDS

First, we evaluate the accuracy of the high-precision DQDS algorithm. Com-
parison of the maximum relative error of q columns calculated by the DQDS,
HDQDS, and DD DQDS algorithms on test matrices of different scales is used
to evaluate the precision of the numerical results. The maximum relative error
is denoted as

maxmmaxn{|symq(n+1)
m − q(n+1)

m |/symq(n+1)
m }. (82)

The exact result is obtained by DQDS algorithm with sym function in Matlab.
Now, we test the accuracy of the HDQDS algorithm using the shift s = 0.

As a first test, we use 10 different upper bidiagonal matrices of size n× n with
ranges from n = 500 to 600 (middle-scale matrices) [21, 27]. Each element in
the diagonals and the upper subdiagonals is a random number from 0 to 1. At

the same time, we separately calculate the maximum relative error of all q
(n+1)
m

obtained by each test matrix, as shown in Fig.3(a). One can find that all the
relative error of the HDQDS algorithm is of the order of 10−16, or even 10−17,
which is a totally stable behavior like the DD DQDS algorithm. Note that both
algorithms obtain an error of the order of the roundoff unit of the computer. In
comparison, the relative error of the DQDS algorithm has apparent fluctuations
between 10−16 and 10−13. Note that this result shows a rounding error of order
O(n), what is typical of stable algorithms (like the DQDS one) and of the order
of just the summation algorithm. The very good results of the tests of the
HDQDS algorithm are due to the reduction of the accumulation of rounding
errors in the calculation process. In the next experiment, we change the matrix
size to use 10 small-scale matrices to demonstrate our proposed algorithm’s
accuracy. We set the matrices’ size range from n = 5 to 50. We can observe
from Fig.3(b) that our method has higher stability compared to the original
DQDS algorithm. We further expand the matrix scale to verify the accuracy
of our proposed algorithm, increasing the matrix size from 2000 to 3000. One
can see from Fig.3(c) that the maximum relative error of q calculated using
the HDQDS algorithm is less than or equal to the working accuracy because
EFT minimizes the impact of accuracy loss. The DQDS algorithm is not stable
enough when computing the maximum relative error of q for large matrices due
to the accumulation of rounding errors.

Next, we set shift s to Johnson shift [18]

s(n) = q(n)m −
√
e
(n)
m−1q

(n)
m +

1

4
e
(n)
m−1>0. (83)
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Figure 3: Maximum relative errors on the q columns using the DQDS, HDQDS, and DD DQDS
algorithms without shift. (a) Matrix size n = 500:10:600. (b) Matrix size n = 5:5:50. (c)
Matrix size n = 2000:100:3000.
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Figure 4: Maximum relative errors on the q columns using the DQDS, HDQDS, and DD DQDS
algorithms using the Johnson shift.

Similarly, we use upper bidiagonal matrices of different scales for testing, each
element in the diagonals and the upper subdiagonals is a random number from
0 to 1. The result is shown in Fig.4, presenting a similar performance as before.
Therefore, the stability of the HDQDS algorithm is much better than that of the
DQDS algorithm, and its accuracy is comparable to the DD DQDS algorithm.

Besides, we compared the computation time of DQDS, HDQDS and DD DQDS
algorithms on the Tianhe supercomputing platform. We show the statistical ex-
perimental results in Fig.5. Each set of experimental results is obtained through
multiple tests. One can see from Fig.5 that the running time of our HDQDS
is slightly higher than that of the original DQDS. The reason is that HDQDS
adds many auxiliary calculation steps to reduce rounding errors. Our target
is to reduce the accumulation of rounding errors and improve the accuracy of
calculations, so a slight increase in running time is acceptable. One can observe
from Fig.3 and Fig.4 that our HDQDS algorithm not only has nearly similar
accuracy to DD DQDS, but its computation time is much less than that of
DD DQDS algorithm. Our HDQDS algorithm almost achieves double-double
precision arithmetic operations, so a slight increase in running time is accept-
able.

6.3. Performance Evaluation of Mixed-Precision DQDS

In this section, we evaluate the mixed-precision DQDS algorithm’s perfor-
mance by comparing the computation time of MDQDS and DQDS under test
matrices of different sizes on the Tianhe supercomputing platform. The test
matrices are upper bidiagonal matrices where all the diagonals and the upper
subdiagonals are randomly obtained from the interval [0, 1]. Each set of exper-
imental results is obtained through multiple tests.
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Figure 5: Running Time of DQDS, HDQDS, and DD DQDS on the CPU.

(a) (b)

(c)

Figure 6: Running Time of DQDS and MDQDS on the CPU without shift. (a) Matrix size n
= 1000:1000:5000. (b)Matrix size n = 6000:1000:10000.(c)Matrix size n = 10000:10000:50000.
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Firstly, we test the running time of the MDQDS algorithm on the CPU
when shift s=0. We test DQDS and MDQDS algorithms using different upper
bidiagonal matrices. As shown in Fig.6(a), it can be seen that under the same
iterative convergence conditions, the running time of our mixed-precision DQDS
algorithm is smaller than that of the DQDS algorithm. The reason is that
we use different floating point formats for different operations. The key part
uses double-precision, and the other parts use single-precision, which speeds up
the calculation while maintaining the same number of iterations. We increase
the matrix size from 6000 to 10000, and Fig.6(b) shows that our method has
the same number of iterations as the original DQDS algorithm and has less
computation time. We further expand the matrix size from 10000 to 50000, and
the results are shown in Fig.6(c). With the increase of matrix size, it can be
found that the time of both algorithms increases, but the MDQDS algorithm
is always lower than the other. Table 3 shows the number of iterations for
MDQDS and DQDS. Because we are testing with random matrices, the number
of iterations we display is the average of 10 random matrices [21, 27]. This
also proves that our MDQDS algorithm can converge faster under the same
convergence criterion.

Table 3: Iteration numbers of the MDQDS and DQDS algorithm

Name 5 10 30 50 80 100 300 500 800 1000
MDQDS 5.8 14.4 8.3 6.9 12.9 6.5 5.4 6.6 17.8 7.5
DQDS 5.8 14.4 8.3 6.9 12.9 6.5 5.4 6.6 17.8 7.5

Figure 7: Running Time of DQDS and MDQDS on the CPU using the Johnson shift.

Then we set shift s to Johnson shift, using upper bidiagonal matrices of
different scales for testing. Our MDQDS algorithm has the same number of
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iterations as the DQDS algorithm under the same iterative convergence condi-
tions, and our MDQDS algorithm spends less computation time shown in Fig.7.

The main use of mixed-precision algorithms is to maintain the convergence
properties with the same number of iterations. Users who do not have strict
requirements on precision and have requirements on time cost can choose our
MDQDS algorithm, which reduces the overhead very well.

7. Conclusions

The DQDS algorithm has the problems of inaccurate results and long calcu-
lation time when solving the singular value of the matrix. Based on these draw-
backs, this article proposes two new algorithms. One option is to use Error Free
Transformations (EFT) technology to decrease rounding errors and ultimately
improve accuracy results, which is called the high-precision DQDS algorithm
(HDQDS). Additionally, we present the error analysis of the inner loop of the
DQDS and HDQDS algorithms. Another algorithm uses the mixed-precision
idea to speed up the calculation, where the key steps use double-precision,
and the other parts use single-precision, which is called the mixed-precision
DQDS algorithm. Furthermore, we propose a precision-adjustable computa-
tional framework for solving singular values, named PACF. In our PACF, the
same solution algorithm contains three modes: original mode, high-precision
mode, and mixed-precision mode. We conduct extensive experiments on super-
computing platforms, and we show that our algorithm outperforms the original
algorithm and is credible and efficient. Our framework is easy to operate, which
is universal and extensible.

In future work, we prepare to investigate the high-precision and mixed-
precision modes of other algorithms for solving singular values of matrices and
add them to our framework to further improve performance.
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