36 research outputs found

    Effect of Initial Disturbance on The Detonation Front Structure of a Narrow Duct

    Full text link
    The effect of an initial disturbance on the detonation front structure in a narrow duct is studied by three-dimensional numerical simulation. The numerical method used includes a high resolution fifth-order weighted essentially non-oscillatory scheme for spatial discretization, coupled with a third order total variation diminishing Runge-Kutta time stepping method. Two types of disturbances are used for the initial perturbation. One is a random disturbance which is imposed on the whole area of the detonation front, and the other is a symmetrical disturbance imposed within a band along the diagonal direction on the front. The results show that the two types of disturbances lead to different processes. For the random disturbance, the detonation front evolves into a stable spinning detonation. For the symmetrical diagonal disturbance, the detonation front displays a diagonal pattern at an early stage, but this pattern is unstable. It breaks down after a short while and it finally evolves into a spinning detonation. The spinning detonation structure ultimately formed due to the two types of disturbances is the same. This means that spinning detonation is the most stable mode for the simulated narrow duct. Therefore, in a narrow duct, triggering a spinning detonation can be an effective way to produce a stable detonation as well as to speed up the deflagration to detonation transition process.Comment: 30 pages and 11 figure

    Which service is better on a linear travel corridor: Park & ride or on-demand public bus?

    Get PDF
    This paper develops an analytical model to support the decision-making for selection of a public transport service (PTS) provision between park & ride and on-demand public bus (ODPB). The objective of the model is to maximise the total social welfare, which includes consumer surplus and operator’s net profit. The model is solved by a heuristic solution procedure and tested on an idealized linear travel corridor. The case study considers the effects from population density, density distribution, size of residential area, P&R station location, distance from the residential area to centre business area (CBD), as well as the changes of residential area layout and population growth. Results show that P&R fits for low population density area while ODPB is more suitable for high population density area. Population distribution type has little influence on the services’ social welfare. ODPB is a preferable service for the city which does not have advanced metro network. Besides, the investment time for building ODPB service in the planning horizon is discussed with consideration of the development of residential area

    BGA Device Detection System Based on Frame Integral Reducing Noise Method

    No full text

    Introducing a strain-hardening capability to improve the ductility of bulk metallic glasses via severe plastic deformation

    No full text
    The great technological potential for bulk metallic glasses (BMGs) arises primarily because of their superior mechanical properties. To realize this potential, it is essential to overcome the severe ductility limitations of BMGs which are generally attributed to shear localization and strain softening. Despite much international effort, progress in improving the ductility of BMGs has been limited to certain alloys with specific compositions. Here, we report that severe plastic deformation of a quasi-constrained volume, which prevents brittle materials from fracture during the plastic deformation, can be used to induce strain hardening and to reduce shear localization in BMGs, thereby giving a significant enhancement in their ductility. Structural characterizations reveal the increased free volume and nanoscale heterogeneity induced by severe plastic deformation are responsible for the improved ductility. This finding opens a new and important pathway towards enhanced ductility of BMG

    Thermal stability and properties of deformation-processed Cu-Fe in situ composites

    Get PDF
    This paper investigated the thermal stability, tensile strength, and conductivity of deformation-processed Cu-14Fe in situ composites produced by thermo-mechanical processing. The thermal stability was analyzed using scanning electronic microscope and transmission electron microscope. The tensile strength and conductivity were evaluated using tensile-testing machine and micro-ohmmeter, respectively. The Fe fibers in the deformation-processed Cu-14Fe in situ composites undergo edge recession, longitudinal splitting, cylinderization, break-up, and spheroidization during the heat treatment. The Cu matrix experiences recovery, recrystallization, and precipitation phase transition. The tensile strength and conductivity first increase with increasing temperature of heat treatment, reach peak values at different temperatures, and then decrease at higher temperatures. The value of parameter Z of the in situ composite reaches the peak of 2.86 x 107 MPa2 pct IACS after isothermal heat treatment at 798 K (525 °C) for 1 hour. The obtained tensile strength and conductivity of the in situ composites are 907 MPa and 54.3 pct IACS; 868 MPa and 55.2 pct IACS; 810 MPa and 55.8 pct IACS; or 745 MPa and 57.4 pct IACS, at η = 7.8 after isochronal heat treatment for 1 hour
    corecore