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Thermal stability and properties of deformation-processed Cu-Fe in situ
composites

Abstract
This paper investigated the thermal stability, tensile strength, and conductivity of deformation-processed
Cu-14Fe in situ composites produced by thermo-mechanical processing. The thermal stability was analyzed
using scanning electronic microscope and transmission electron microscope. The tensile strength and
conductivity were evaluated using tensile-testing machine and micro-ohmmeter, respectively. The Fe fibers in
the deformation-processed Cu-14Fe in situ composites undergo edge recession, longitudinal splitting,
cylinderization, break-up, and spheroidization during the heat treatment. The Cu matrix experiences recovery,
recrystallization, and precipitation phase transition. The tensile strength and conductivity first increase with
increasing temperature of heat treatment, reach peak values at different temperatures, and then decrease at
higher temperatures. The value of parameter Z of the in situ composite reaches the peak of 2.86 x 107 MPa2
pct IACS after isothermal heat treatment at 798 K (525 °C) for 1 hour. The obtained tensile strength and
conductivity of the in situ composites are 907 MPa and 54.3 pct IACS; 868 MPa and 55.2 pct IACS; 810 MPa
and 55.8 pct IACS; or 745 MPa and 57.4 pct IACS, at η = 7.8 after isochronal heat treatment for 1 hour.

Keywords
properties, deformation, processed, thermal, cu, stability, fe, situ, composites

Disciplines
Engineering | Science and Technology Studies

Publication Details
Liu, K., Jiang, Z., Zhao, J., Zou, J., Lu, L. & Lu, D. (2015). Thermal stability and properties of deformation-
processed Cu-Fe in situ composites. Metallurgical and Materials Transactions A: Physical Metallurgy and
Materials Science, 46 (5), 2255-2261.

Authors
Keming Liu, Zhengyi Jiang, Jingwei Zhao, Jin Zou, Lei Lu, and Deping Lu

This journal article is available at Research Online: http://ro.uow.edu.au/eispapers/3441

http://ro.uow.edu.au/eispapers/3441


Thermal Stability and Properties of Deformation-Processed
Cu-Fe In Situ Composites

KEMING LIU, ZHENGYI JIANG, JINGWEI ZHAO, JIN ZOU, LEI LU, and DEPING LU

This paper investigated the thermal stability, tensile strength, and conductivity of deformation-
processed Cu-14Fe in situ composites produced by thermo-mechanical processing. The thermal
stability was analyzed using scanning electronic microscope and transmission electron micro-
scope. The tensile strength and conductivity were evaluated using tensile-testing machine and
micro-ohmmeter, respectively. The Fe fibers in the deformation-processed Cu-14Fe in situ
composites undergo edge recession, longitudinal splitting, cylinderization, break-up, and
spheroidization during the heat treatment. The Cu matrix experiences recovery, recrystalliza-
tion, and precipitation phase transition. The tensile strength and conductivity first increase with
increasing temperature of heat treatment, reach peak values at different temperatures, and then
decrease at higher temperatures. The value of parameter Z of the in situ composite reaches the
peak of 2.86 9 107 MPa2 pct IACS after isothermal heat treatment at 798 K (525 �C) for
1 hour. The obtained tensile strength and conductivity of the in situ composites are 907 MPa
and 54.3 pct IACS; 868 MPa and 55.2 pct IACS; 810 MPa and 55.8 pct IACS; or 745 MPa and
57.4 pct IACS, at g = 7.8 after isochronal heat treatment for 1 hour.
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I. INTRODUCTION

BINARY deformation-processed Cu-Fe in situ com-
posites produced by thermo-mechanical processing have
been the subject of extensive research during the past
two decades due to the low cost of iron.[1–9] However,
the Cu-Fe system in situ composites have relatively low
conductivity because of the relatively high solubility of
Fe in Cu at high temperatures, the slow kinetics of Fe
precipitation at lower temperatures, and the particularly
harmful influence of iron atoms in solid solution on the
conductivity.[10,11] Previous research[12,13] has explored
two main approaches to improve the strength and
conductivity of Cu-based systems in situ composites.
One approach is to modify the composition, particularly
using extra alloying elements.[14–16] Ag has been used as
a third element in many studies,[17–23] because the
electronegativity, electronic structure, and crystal struc-
ture of Ag are similar to those of Cu and the electrical
conductivity of Ag is higher than that of Cu. The other
approach is to modify the processing using various heat
treatments.

Heat treatment with appropriate holding time and
temperature allows high conductivity to be achieved
and can produce an excellent combination of strength
and conductivity.[24–28] Raabe and Ge[19] investigated
the effect of annealing temperature and time on the
microstructure of Cu-10Cr-3Ag in situ composite, and
found that the fibers underwent a capillarity-driven
shape change from bamboo morphology with grain
boundary grooves to complete spheroidization during
annealing. Stepped annealing process for Cu-11Fe-6Ag
and Cu-12Fe in situ composites was investigated by
Gao et al.[29] They found that proper stepped anneal-
ing at a certain draw ratio produced better combina-
tion of strength and conductivity. The work of Xie
et al.[5] indicated that the prior homogenization heat
treatment resulted in the refinement of the primary Fe
dendrites in the Cu matrix and promoted the pre-
cipitation of the secondary Fe particles from the Cu
matrix, which led to an increase in the strength and
conductivity of the in situ composites. The result
obtained by Wu et al.[30] showed that heat treatments
could improve the strength of Cu-6 wt pct Fe and Cu-
12 wt pct Fe filamentary composites by increasing the
precipitation strengthening and interface strengthening
levels.
In our previous work,[10] we investigated the mi-

crostructure and properties of deformation-processed
Cu-14Fe in situ composite produced by thermo-me-
chanical processing. This paper builds on that work
and studies the influence of heat treatments on the
microstructure and properties of deformation-pro-
cessed Cu-14Fe in situ composites with the purpose
of producing a Cu-Fe in situ composite with excellent
combination of tensile strength and electrical conduc-
tivity.
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II. EXPERIMENTAL DETAILS

The Cu-14Fe alloy was prepared by melting appropri-
ate amounts of electrolytic Cu, commercial Fe (of at least
99.94 wt pct purity) in a magnesia crucible using a
vacuum induction furnace, and then was casted into a
rod-shaped ingot of about 36 mm in diameter using a
graphite mold. The in situ composite was produced by
thermo-mechanical processing as follows. The rod-
shaped ingot was heated to 1223 K (950 �C) at a rate of
5 K/min, held for 3 hours and then water quenched. The
quenched ingot was hot rolled at 1123 K (850 �C) and
machined to remove surface oxides and defects. The
machined ingot was heated to 1223 K (950 �C) at a rate of
5 K/min, held for 70 minutes and then water quenched.
The quenched ingot was cold drawn to a cumulative cold
deformation strain of g = 7andwas cut into heat-treated
samples. Then they were subjected to isochronal heat
treatments for 1 hour at different temperatures from
473 K to 973 K (200 �C to 700 �C) and isothermal heat
treatments at 798 K (525 �C) for different times from 1 to
8 hours, and finally furnace cooled to room temperature.
The heat-treated sample was cold drawn to g = 7.8, and
aged by heating to temperatures from 473 K to 873 K
(200 �C to 600 �C) for 1 hour, and finally furnace cooled
to room temperature. The heating rate is 5 K/min. The
cumulative cold deformation strain was obtained by

g ¼ lnðA0=AfÞ; ½1�

where A0 is the original cross-sectional area and Af is the
final cross-sectional area.

The microstructures of the deformation-processed and
heat-treated samples were investigated using a scanning
electronicmicroscope (SEM)and a transmission electronic
microscope (TEM). The SEM specimens were prepared
through mounting, mechanical grinding, polishing, and
then etching in a solution of 120 mLH2O, 20 mLHCl, and
5 g FeCl3. The TEM specimens were prepared by me-
chanical thinning using grinding papers, decreasing the
thickness using a dimple machine, and ion milling using a
GatanModel 600 ion beam thinner. The tensile properties
of the deformation-processed and heat-treated specimens
were evaluated using an electronic tensile-testing machine.
The ultimate tensile stress (UTS)was taken as ameasure of
the tensile strength for comparisonpurposes because itwas
very reproducible and well defined for similar specimens.
The electrical resistivity (q) was measured by a ZY9987
digital micro-ohmmeter with precision of 1 lX at room
temperature. The corresponding conductivitywas evaluat-
ed according to the definition of International Annealed
Copper Standard (IACS) inwhich 1.7241 lXÆcm is defined
as 100 pct IACS.

III. RESULTS AND DISCUSSION

A. Thermal Stability

Figure 1 presents the SEM microstructures of the Cu-
14Fe in situ composite with g = 7 in the longitudinal
section, heat treated for 1 hour at different temperatures
ranging from 573 K to 873 K (300 �C to 600 �C). The

microstructure of the as-drawn in situ composite is
composed of Cu matrix and elongated Fe fibers. The
darker fibers correspond to the Fe phase, and the lighter
areas correspond to the Cu matrix. At temperatures
lower than 573 K (300 �C), no pronounced change in
the morphology of the Fe fibers is observed, as shown in
Figure 1(a). At the temperature of 673 K (400 �C), edge
recessions and thermal grooves in Fe phase are occa-
sionally found in the longitudinal section although the
interfaces between Cu matrix and Fe fibers are still clear,
as seen in Figure 1(b). At the temperature of 773 K
(500 �C), obvious unevenness of the fibers surface and
coarsening can be observed, and some fibers are starting
longitudinal splitting and cylinderization, as observed in
Figure 1(c). With the further increase of temperature,
the break-up and spheroidization of the Fe fibers start to
take place. At the temperature of 873 K (600 �C), break-
up and spheroidization are seen distinctly in most of the
fibers, and some fine fibers are transformed into sphere
chains, as shown in Figure 1(d). The Fe fibers experience
morphology changes such as edge recession, longitudi-
nal splitting, cylinderization, break-up, and spheroidiza-
tion after exposed to elevated temperatures, which is in
agreement with previous research.[19,28]

Figure 2presents theTEMimagesof theCu-14Fe in situ
composite with g = 7 heat treated for 1 hour at different
temperatures ranging from 573 K to 873 K (300 �C to
600 �C). At temperatures lower than 573 K (300 �C),
recovery occurs in most of the Cu grains and there are no
pronounced precipitates, but elongated cellular substruc-
tures parallel to the drawing direction can be observed,
and lots of dislocations are found in the cell walls of the
substructure, as indicated by the arrows in Figure 2(a). At
the temperature of 673 K (400 �C), subgrain boundaries
are clear because of the dislocation climb, crystallization
nucleus can be observed in the junction of subgrains and
the interior of the Cu grains with high energy, as indicated
by the arrows in Figure 2(b), and some grains’ crystalliza-
tions have completed. With the further increase of
temperature, recrystallization and precipitation proceed
simultaneously in the Cu matrix. At the temperature of
773 K (500 �C), precipitates can be seen obviously in the
recrystallized grains, as indicated by the arrows in Fig-
ure 2(c). However, even though at the temperature of
873 K (600 �C), subgrains are still visible in some grains,
as indicated by the arrows in Figure 2(d), which suggests
that the migration of Cu grain boundaries is immensely
impeded and continuous recrystallization accompanied
with discontinuous recrystallization during the heat treat-
ment. Gao et al.[28] studied the thermal stability of
deformation-processedCu-Fe in situ composite and found
the similar changes in the Cu matrix of Cu-12Fe in situ
composite during annealing treatment. As shown in
Figure 2, there are two main changes in the Cu matrix
during the heat treatment. One change is the recovery and
recrystallization, and the other change is the precipitation
of the supersaturated Cu matrix.

B. Strength and Conductivity

Figure 3 presents the tensile strength and conductivity
of the Cu-14Fe in situ composite with g = 7 heat treated
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for 1 hour at different temperatures ranging from 473 K
to 973 K (200 �C to 700 �C). As shown in Figure 3,
both the tensile strength and conductivity of the in situ
composite increase gradually after isochronal aging
treatment. The tensile strength reaches a peak value at
673 K (400 �C), and then it is progressively lower after
isochronal heat treatments at higher temperatures. At
temperatures lower than 673 K (400 �C), there is no
significant coarsening of Fe fibers by recrystallization,
whereas some fine Fe precipitates increase the strength
of the Cu matrix. Gao et al.[27] reported that the
precipitation strengthening of nano-scaled Fe particles
led to the formation of the hardness peak of Cu-12Fe
in situ composite. At higher temperatures, the tensile
strength decreases because the heat treatment promotes
the coarsening of Fe fibers, the conglomeration of
precipitated Fe particles, the recovery, and recrystal-
lization of the Cu matrix.[1,10,27] Similar to the effect of
different heat treatments on the tensile strength, the
conductivity reaches a peak at 798 K (525 �C), and then
it is progressively lower after isochronal heat treatments
at higher temperatures. The increase in conductivity to
798 K (525 �C) is attributed to the decrease of Fe atoms
in solid solution in the Cu matrix.[1] At higher tem-
peratures, the coarsening of Fe fibers induces much
more cross-sectional Cu/Fe phase interfaces and the
conduction is forced to penetrate through the highly

resistive Fe phase, which results in a rapid decrement of
conductivity. Furthermore, the high solubility of Fe in
the Cu matrix above 798 K (525 �C) can also contribute
to the conductivity drop.[1,27]

C. Determination of Heat Treatment Process

Figure 4 presents the tensile strength and conduc-
tivity of the Cu-14Fe in situ composite with g = 7 heat
treated at 798 K (525 �C) for different times ranging
from 1 to 8 hours. As mentioned above, the tensile
strength and conductivity of the Cu-14Fe in situ com-
posite increase with the heat treatment temperature and
reaches the peak value at 673 K and 798 K (400 �C and
525 �C), respectively. At temperatures higher than
798 K (525 �C), the tensile strength and conductivity
reduce at a high rate of speed. Therefore, the proper
heat treatment temperature should not exceed 798 K
(525 �C). In addition, the tensile strength can be rapidly
improved through a subsequent cold deformation. For
this reason, 798 K (525 �C) is selected as the isothermal
heat treatment temperature. As shown in Figure 4, the
tensile strength of the in situ composite reduces after
isothermal heat treatment, and the decrement increases
with increasing time of isothermal heat treatment. The
conglomeration of the precipitated particles and the
coarsening of the fibers intensify, and the recrystalliza-

Fig. 1—Longitudinal SEM microstructures of Cu-14Fe in situ composite at g = 7 after heat treatment at different temperatures for 1 h: (a)
573 K (300 �C), (b) 673 K (400 �C), (c) 773 K (500 �C), and (d) 873 K (600 �C).
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tion of the matrix is more sufficient with increasing time
of isothermal heat treatment, which decreases the tensile
strength of the in situ composite. Different from the
change of the tensile strength, the conductivity of the
in situ composite rises after isothermal heat treatment.
The increment increases with increasing time of isother-
mal heat treatment. The Fe atoms in solid solution in

the Cu matrix reduces with increasing time of isother-
mal heat treatment, and the break-up and spheroidiza-
tion of the Fe fibers hardly occur after heat treatments
at 798 K (525 �C) for different times used in this
investigation, which promotes the increase of conduc-
tivity. This finding is in agreement with previous
research.[10,29]

Fig. 2—TEM microstructures of Cu-14Fe in situ composite at g = 7 after heat treatment at different temperatures for 1 h: (a) 573 K (300 �C),
(b) 673 K (400 �C), (c) 773 K (500 �C), and (d) 873 K (600 �C).

Fig. 3—Tensile strength and conductivity curves of Cu-14Fe in situ
composites at g = 7 after isochronal heat treatment for 1 h.

Fig. 4—Tensile strength and conductivity curves of Cu-14Fe in situ
composites at g = 7 after isothermal heat treatment at 798 K
(525 �C).
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Figure 5 presents Z value curve of the Cu-14Fe in situ
composites with g = 7 heat treated at 798 K (525 �C)
for different times ranging from 1 to 8 h. As mentioned
above, the conductivity of the Cu-14Fe in situ composite
increases, while the tensile strength decreases with
increasing time of heat treatment. Any of the two
properties cannot represent the service performance of
the in situ composite. Based on lots of running tests of
electric railway contact wires, a parameter Z evaluated
that the combination property of Cu-based in situ
composites is proposed in Japan. The parameter can be
expressed as follows[29,31]:

Z ¼ r2
b � u; ½2�

where rb is the tensile strength and u is the electrical
conductivity of the composites. As shown in Figure 5,
the value of parameter Z of the in situ composite
increases after isothermal heat treatment at 798 K
(525 �C) and reaches a peak value at 1 hour, then the
Z value is progressively lower after isothermal heat
treatments at longer time, which indicates that the
optimum combination property can be obtained when
the in situ composite is heat treated at 798 K (525 �C)
for 1 hour. Therefore, 798 K (525 �C) and 1 hour are,
respectively, selected as the optimum heat treatment
temperature and duration time for the in situ composite.

D. Final Combination of Strength and Conductivity

Figure 6 presents the conductivity and tensile strength
of the Cu-14Fe in situ composites with g = 7 after heat
treatment at 798 K (525 �C) for 1 hour and cold
drawing to g = 7.8 after heat treatment at g = 7,
respectively. As shown in Figure 6, the conductivity of
the in situ composite after heat treatment at g = 7 drops
slightly, and the tensile strength rapidly improves after
cold drawing to g = 7.8. The resistivity of the defor-
mation-processed Cu-based in situ composites is depen-
dent on the parallel circuit model,[10,15,21,27] which
suggests about 97 pct resistivity of Cu-Fe in situ com-
posite results from the Cu matrix,[27] and the resistivity
of the Cu matrix can be partitioned into the contribu-

tion of four principal scattering mechanisms, i.e.,
interface, phonon, dislocation, and impurity scattering.
In addition, previous research[21,27] indicated that the
strength of deformation-processed Cu-based in situ
composites obeys the Hall–Petch equation, i.e.,
r � k�1/2, where r is the tensile strength of Cu-based
in situ composites and k is the fiber spacing. As a result,
the electrical conductivity and tensile strength of the
deformation-processed Cu-based in situ composites are
mainly determined by the microstructures.
Figure 7 presents the SEM microstructures of the Cu-

14Fe in situ composite with g = 7 after heat treatment
at 798 K (525 �C) for 1 hour and g = 7.8 in the
longitudinal sections. Figure 7(a) indicates that the
fibers’ surfaces are strongly uneven and the fibers
become significant coarsen in the in situ composite after
heat treatment. While the uneven and coarsening fibers
are renewedly transformed into uniform and fine fibers
by being further cold drawn to g = 7.8, as shown in
Figure 7(b). This result suggests that the morphology
changes of the fibers in deformation-processed in situ
composites can be rapidly refined and homogenized
through a subsequent cold deformation. Further cold
deformation promotes the refining and homogenization
of the uneven and coarsening fibers in the in situ
composite, and will decrease the fiber spacing and
increase the interface density. The tensile strength
rapidly rises after cold drawing to g = 7.8 due to the
decrease of fiber spacing. The conductivity slightly drops
after cold drawing to g = 7.8 because the increased
interface density improved interface scattering resis-
tivity, which indicates that selecting the temperature of
the conductivity peak value as the optimum heat
treatment temperature is reasonable.
Figure 8 presents the tensile strength and conductivity

of the Cu-14Fe in situ composite with g = 7.8 heat
treated for 1 hour at different temperatures ranging
from 473 K to 873 K (200 �C to 600 �C), respectively.
As mentioned above, the parameter Z reaches a peak
value after heat treatment for 1 hour. The tensile
strength and conductivity of the in situ composite
increase gradually with increasing temperature of heat

Fig. 5—Z value curve of Cu-14Fe in situ composites at g = 7 after
isothermal heat treatment at 798 K (525 �C).

Fig. 6—Tensile strength and conductivity of Cu-14Fe in situ com-
posite with g = 7 after 798 K (525 �C) 9 1 h heat treatment, and
cold drawing to g = 7.8 after heat treatment at g = 7.
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treatment and reach peak values at different tem-
peratures, and then both values decrease at higher
temperatures. Therefore, aging for 1 hour at different
temperatures is selected as the heat treatment process to
adjust and control the strength and conductivity of the
deformation-processed Cu-14Fe in situ composite with
g = 7.8. As shown in Figure 8, similar to the influence
of heat treatment on the Cu-14Fe in situ composite with
g = 7, the tensile strength and conductivity of the Cu-
14Fe in situ composite with g = 7.8 first increase and
then decrease with increasing temperature of aging
treatment. While the temperatures of the tensile strength
and conductivity peak of the in situ composite at
g = 7.8 heat treated for 1 hour are, respectively, lower
than those of the in situ composite at g = 7. This is
attributed to the fact that the heat stability of Cu-14Fe
in situ composite at g = 7.8 is weaker than that at
g = 7.[1,27,32] The tensile strength and conductivity of
the deformation-processed Cu-14Fe in situ composite
with g = 7.8 after isochronal heat treatment for 1 hour
reach 907 MPa and 54.3 pct IACS; 868 MPa and

55.2 pct IACS; 810 MPa and 55.8 pct IACS; or
745 MPa and 57.4 pct IACS.

IV. CONCLUSIONS

1. The Fe fibers in the deformation-processed Cu-14Fe
in situ composites undergo morphology changes
such as edge recession, longitudinal splitting, cylin-
derization, break-up, and spheroidization after ex-
posure to elevated temperatures.

2. The Cu matrix experiences recovery, recrystalliza-
tion, and precipitation phase transition during the
heat treatment.

3. The tensile strength and conductivity first increase
with increasing temperature of heat treatment,
reach peak values at different temperatures, and
then decrease at higher temperatures.

4. The value of parameter Z of the deformation-pro-
cessed Cu-14Fe in situ composite with g = 7 after
the isothermal heat treatments at 798 K (525 �C)
for 1 hour reaches the peak value of
2.86 9 107 MPa2 pct IACS.

5. The tensile strength and conductivity of the defor-
mation-processed Cu-14Fe in situ composite with
g = 7.8 after isochronal heat treatment for 1 hour
reach 907 MPa and 54.3 pct IACS; 868 MPa and
55.2 pct IACS; 810 MPa and 55.8 pct IACS; or
745 MPa and 57.4 pct IACS.
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