70 research outputs found

    Dietary Lipoic Acid Influences Antioxidant Capability and Oxidative Status of Broilers

    Get PDF
    The effects of lipoic acid (LA) on the antioxidant status of broilers were investigated. Birds (1 day old) were randomly assigned to four groups and fed corn-soybean diets supplemented with 0, 100, 200, 300 mg/kg LA, respectively. The feeding program included a starter diet from 1 to 21 days of age and a grower diet from 22 to 42 days of age. Serum, liver and muscle samples were collected at 42 days of age. For antioxidant enzymes, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity in serum, liver and breast muscle significantly increased in chickens fed with LA. The concentration of malondiadehyde (MDA), an indicator of lipid peroxidation, was significantly lower in serum, liver and leg muscle in birds that received LA than in the control group. Treatments with LA significantly increased glutathione (GSH) content in liver and increased α-tocopherol content in leg muscle as compared to the control. These results indicate that dietary supplementation with 300 mg/kg LA may enhance antioxidant capability and depress oxidative stress in broilers

    The neural correlates of value hierarchies: a prospective typology based on personal value profiles of emerging adults

    Get PDF
    IntroductionValue hierarchies, as motivational goals anchored in the self-schema, may be correlated with spontaneous activity in the resting brain, especially those involving self-relevance. This study aims to investigate the neural correlates of value hierarchies from the perspective of typology.MethodsA total of 610 Chinese college students (30.31% women), aged 18 to 23, completed the personal values questionnaire and underwent resting-state functional magnetic resonance imaging.ResultsThe latent profile analysis revealed three personal value profiles: traditional social orientation, modernized orientation, and undifferentiated orientation. Neuroimaging results revealed that individuals with modernized orientation prioritized openness to change value, and this personal-focus is related to the higher low-frequency amplitude of the posterior insula; individuals with traditional social orientation prioritized self-transcendence and conservation values, and this social-focus is related to the stronger functional connectivity of the middle insula with the inferior temporal gyrus, temporal gyrus, posterior occipital cortex, and basal ganglia, as well as weaker functional connections within the right middle insula.DiscussionTaken together, these findings potentially indicate the intra-generational differentiation of contemporary Chinese emerging adults’ value hierarchies. At the neural level, these are correlated with brain activities involved in processing self- and other-relevance

    A simulation study on the measurement of D0-D0bar mixing parameter y at BES-III

    Full text link
    We established a method on measuring the \dzdzb mixing parameter yy for BESIII experiment at the BEPCII e+ee^+e^- collider. In this method, the doubly tagged ψ(3770)D0D0\psi(3770) \to D^0 \overline{D^0} events, with one DD decays to CP-eigenstates and the other DD decays semileptonically, are used to reconstruct the signals. Since this analysis requires good e/πe/\pi separation, a likelihood approach, which combines the dE/dxdE/dx, time of flight and the electromagnetic shower detectors information, is used for particle identification. We estimate the sensitivity of the measurement of yy to be 0.007 based on a 20fb120fb^{-1} fully simulated MC sample.Comment: 6 pages, 7 figure

    N-linoleyltyrosine resisted the growth of non-small cell lung cancer cells via the regulation of CB1 and CB2 involvement of PI3K and ERK pathways

    Get PDF
    Background: N-linoleyltyrosine (NITyr), one of the anandamide analogs, exerts activity via the endocannabinoid receptors (CB1 and CB2), which showed anti-tumor effects in various tumors. Therefore, we speculated that NITyr might show anti-non-small cell lung cancer (NSCLC) effects via the CB1 or CB2 receptor. The purpose of the investigation was to reveal the anti-tumor ability of NITyr on A549 cells and its mechanisms.Methods: The viability of A549 cells was measured by MTT assay, and the cell cycle and apoptosis were both examined by flow cytometry; in addition, cell migration was tested by wound healing assay. Apoptosis-related markers were measured by immunofluorescence. The downstream signaling pathways (PI3K, ERK, and JNK) of CB1 or CB2 were examined through Western blotting. The expressions of CB1 and CB2 were detected by immunofluorescence. Finally, the AutoDock software was used to validate the binding affinity between the targets, such as CB1 and CB2, with NITyr.Results: We found that NITyr inhibited cell viability, hindered the cell cycle, resulted in apoptosis, and inhibited migration. The CB1 inhibitor, AM251, and the CB2 inhibitor, AM630, weakened the aforementioned phenomenon. The immunofluorescence assay suggested that NITyr upregulated the expression of CB1 and CB2. Western blot analysis indicated that NITyr upregulated the expression of p-ERK, downregulated the expression of p-PI3K, and did not affect p-JNK expression. In conclusion, NITyr showed a role in inhibiting NSCLC through the activation of CB1 and CB2 receptors involved in PI3K and ERK pathways

    Modelling of redox flow battery electrode processes at a range of length scales : a review

    Get PDF
    In this article, the different approaches reported in the literature for modelling electrode processes in redox flow batteries (RFBs) are reviewed. RFB models vary widely in terms of computational complexity, research scalability and accuracy of predictions. Development of RFB models have been quite slow in the past, but in recent years researchers have reported on a range of modelling approaches for RFB system optimisation. Flow and transport processes, and their influence on electron transfer kinetics, play an important role in the performance of RFBs. Macro-scale modelling, typically based on a continuum approach for porous electrode modelling, have been used to investigate current distribution, to optimise cell design and to support techno-economic analyses. Microscale models have also been developed to investigate the transport properties within porous electrode materials. These microscale models exploit experimental tomographic techniques to characterise three-dimensional structures of different electrode materials. New insights into the effect of the electrode structure on transport processes are being provided from these new approaches. Modelling flow, transport, electrical and electrochemical processes within the electrode structure is a developing area of research, and there are significant variations in the model requirements for different redox systems, in particular for multiphase chemistries (gas–liquid, solid–liquid, etc.) and for aqueous and non-aqueous solvents. Further development is essential to better understand the kinetic and mass transport phenomena in the porous electrodes, and multiscale approaches are also needed to enable optimisation across the relevent length scales

    Calcium orthophosphate-based biocomposites and hybrid biomaterials

    Full text link

    Effect of Intramolecular Structural Environment on Bond Dissociation Energies

    No full text
    The density functional calculations were used to explore the dissociation energies of [N(CH3)(4)](+) and [P(CH3)(4)](-) and their derivatives from substitution of H for CH3. The results show that the dissociation energies Of C-N and C-P bonds gradually increase as the number of hydrogen atoms bonded to N or P increases in the derivatives, showing a remarkable effect of the intramolecular structural environment on the dissociation of the bonds. This dependence of bond dissociation energies on the local structural environment can be ascribed to hyperconjugation interactions between the C-H bond and lone single electron of N or P. On the basis of NBO analyses, the bonding properties of dissociated fragments and their effects oil dissociation energies were discussed

    Membranes in non-aqueous redox flow battery

    No full text
    This work was supported by the National Natural Science Foundation of China (Grant No. 21636007) and the Start-up Package of T10108 Professorship offered by Aalto University to Y. Li under contract number 911619. J. Yuan and Q. Qiu acknowledge the financial support from the China Scholarship Council (Grant No. 201906250030 and 201906150314). Z.-Z. Pan acknowledges the financial support of the Academy of Finland (Grant No. 324414).Redox flow battery (RFB) is promising in grid-scale energy storage, and potentially applicable for facilitating the harvest of the intermittent renewable power sources, like wind and solar, and stabilizing the power grid. Early RFBs are based on aqueous electrolytes and the all-vanadium as well as Zn/Br systems have been demonstrated in close commercial scale. Non-aqueous RFBs (NARFBs) are the second-generation flow batteries based on organic solvent which have potentially much wider electrochemical window, and thus possible much higher energy density, and temperature window than those of the aqueous systems. As a crucial component of NARFBs, the membrane serves to prevent the crossover of the positive and negative active species whilst facilitating the transfer of the supporting electrolyte ions. However, the membranes utilized in the state-of-the-art publications still need great improvements in performance. In this article, the fundamentals, classifications, and performances of the membranes in NARFB are introduced. The recent progresses and challenges on the innovation of NARFB membranes are summarized. A perspective on the near future developments of NARFB membranes are presented. The composite membranes are likely the promising direction to forward the development of the NARFB technologies.Peer reviewe
    corecore