8 research outputs found

    Biosensing Technologies for Mycobacterium tuberculosis Detection: Status and New Developments

    Get PDF
    Biosensing technologies promise to improve Mycobacterium tuberculosis (M. tuberculosis) detection and management in clinical diagnosis, food analysis, bioprocess, and environmental monitoring. A variety of portable, rapid, and sensitive biosensors with immediate “on-the-spot” interpretation have been developed for M. tuberculosis detection based on different biological elements recognition systems and basic signal transducer principles. Here, we present a synopsis of current developments of biosensing technologies for M. tuberculosis detection, which are classified on the basis of basic signal transducer principles, including piezoelectric quartz crystal biosensors, electrochemical biosensors, and magnetoelastic biosensors. Special attention is paid to the methods for improving the framework and analytical parameters of the biosensors, including sensitivity and analysis time as well as automation of analysis procedures. Challenges and perspectives of biosensing technologies development for M. tuberculosis detection are also discussed in the final part of this paper

    Fluorescent Nanoparticle-Based Indirect Immunofluorescence Microscopy for Detection of Mycobacterium tuberculosis

    Get PDF
    A method of fluorescent nanoparticle-based indirect immunofluorescence microscopy (FNP-IIFM) was developed for the rapid detection of Mycobacterium tuberculosis. An anti-Mycobacterium tuberculosis antibody was used as primary antibody to recognize Mycobacterium tuberculosis, and then an antibody binding protein (Protein A) labeled with Tris(2,2-bipyridyl)dichlororuthenium(II) hexahydrate (RuBpy)-doped silica nanoparticles was used to generate fluorescent signal for microscopic examination. Prior to the detection, Protein A was immobilized on RuBpy-doped silica nanoparticles with a coverage of ∼5.1×102 molecules/nanoparticle. With this method, Mycobacterium tuberculosis in bacterial mixture as well as in spiked sputum was detected. The use of the fluorescent nanoparticles reveals amplified signal intensity and higher photostability than the direct use of conventional fluorescent dye as label. Our preliminary studies have demonstrated the potential application of the FNP-IIFM method for rapid detection of Mycobacterium tuberculosis in clinical samples

    The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson's disease: mechanisms of action

    No full text
    corecore