8 research outputs found

    Study on emergency evacuation in underground urban complexes.

    No full text
    With progressive urbanization and the development and utilization of urban underground space, underground urban complexes (UUCs) have been increasingly used. UUCs have brought much convenience to people's lives. However, due to their enclosed nature and complexity, it has been an urgent issue to avoid (or reduce) casualties and allow rapid and safe evacuation of people during an emergency. In this study, the evacuation simulation software Pathfinder was used. Based on the steering model, the variation of the total evacuation time and pedestrian flow at main exits with different simulated evacuation measures, congestion at key nodes and people's path selection were compared and analyzed. Then, the critical locations in the spatial layout of UUCs that were prone to evacuation bottleneck effects were focused on and determined. The evacuation effectiveness of UUCs in an emergency was studied to investigate the problems of emergency evacuation in UUCs. It is found that in UUCs, the bottleneck effects were likely to occur at stairway entrances and exits as well as supermarket checkout counters and caused severe congestion. These locations should be focused on during emergency evacuation. For key locations prone to evacuation bottlenecks, increasing the width of exits or setting up auxiliary evacuation channels could be an effective measure to improve evacuation efficiency. In addition, formulating rational evacuation rules can be a favorable measure for emergency evacuation. However, during the evacuation, the herd mentality in people has an uncertain (positive or negative) impact on evacuation effectiveness. Setting up diversion walls may improve evacuation efficiency and reduce congestion to a certain extent, while evacuation confusion and chaos are prone to occur after diversion. These findings in this study have significant implications for improving the emergency management of UUCs

    Simulation Experiment of TSR Promotes Cracking of Coal Generation H2S

    No full text
    Thermochemical sulfate reduction (TSR) is one of the main contributors to the formation of hydrogen sulfide (H2S) in coal seam strata. Four reaction systems (coal, coal+water, coal+water and MgSO4, and coal+water and MgSO4 and AlCl3) were selected and simulated from 250°C to 600°C with eight temperature steps using a high-temperature and high-pressure reaction device, and the evolution characteristics of the gaseous products of hydrocarbons (methane, C2-5) and nonhydrocarbon gases (CO2, H2, and H2S) were studied. Thermal simulation experiments showed that the TSR led to the reduction of heavy hydrocarbons, and the presence of salts accelerated the evolution of hydrocarbons; SO42-, Al3+, and Mg2+ had a certain promoting effect on the TSR, which increased the total amount of alkane gas, H2S, and CO2 production. Improving the salinity of the reaction system can promote the occurrence of TSR, and water plays a key role in hydrocarbon generation evolution and the TSR

    The Influence of Hydrogeology to Generation of Hydrogen Sulfide of Low-Rank Coal in the Southeast Margin of Junggar Basin, China

    No full text
    The salinity, chemical properties, and migration characteristics of groundwater in coal measures are the key factors that affect the generation, migration, and reservoir of hydrogen sulfide (H2S) in low-rank coal seams. Taking the Jurassic coal and rock strata in the southeastern margin of the Junggar basin as the research object, according to the hydrogeological characteristics of the coal measures, the region is divided into 4 hydrogeological units. The coalbed methane contains a large number of secondary biogas. Along the direction of groundwater runoff, the salinity and the pH value increase gradually. The salinity in the hydrogeological units is low; it is not conducive to the propagation of sulfate-reducing bacteria and the formation of hydrogen sulfide of the Houxia, the south of Manasi River, and Hutubi and Liuhuangou area, the western region of the Miquan. The high salinity center and depressions of low water level (hydrodynamic stagnation zone) in the hydrogeological unit of the Liuhuanggou and the Miquan are the main areas for the production and enrichment of H2S in the low-rank coal. The high salinity in water is formed by infiltration, runoff, and drought evaporation. At the same time, the deep confined water environment closed well; in conditions of hydrocarbon-rich, under the action of sulfate-reducing bacteria, bacterial sulfate reduction will occur and hydrogen sulfide formed. According to the circulation characteristics of water bearing H2S in the region, imbricate and single bevel two kind generation and enrichment mode of hydrogen sulfide under the action of hydrodynamic control. The solubility of hydrogen sulfide in pure water and solutions of NaCl and Na2SO4 with different molar concentrations was calculated. The H2S solubility of groundwater in coal measures of 4 hydrogeological units was estimated

    FRACTAL DERIVATIVE MODEL FOR TSUNAMI TRAVELING

    No full text

    Study on the factors of hydrogen sulfide production from lignite bacterial sulfate reduction based on response surface method

    No full text
    Abstract Bacterial sulfate reduction (BSR) is one of the key factors leading to the anomalous accumulation of hydrogen sulphide in coal mines. Environmental factors such as temperature and pH play a crucial role in the metabolism and degradation of coal by sulfate-reducing bacteria (SRB). In this study, coal samples were selected from Shengli Coal Mine, and SRB strains were isolated and purified from mine water using a dilution spread-plate anaerobic cultivation method. Based on single-factor experiments and response surface methodology (RSM), the impact of temperature, pH, oxidation–reduction potential (ORP), chemical oxygen demand to sulfate ratio (COD/SO4 2−) on the generation of hydrogen sulphide during brown coal BSR was analyzed. The results showed that the anaerobic degradation of coal by SRB was inhibited by either too high or too low a temperature to produce hydrogen sulfide, and the greatest production of hydrogen sulfide occurred at a temperature of about 30 °C; The greatest production of hydrogen sulfide occurred at an initial ambient pH of 7.5; COD/SO4 2− ratio of around 2.0 is most conducive to hydrogen sulphide generation; the lower ORP value is more favorable for hydrogen sulfide generation. The optimal conditions obtained by RSM were: temperature of 30.37 °C, pH of 7.64 and COD/SO4 2− of 1.96. Under these conditions, the hydrogen sulfide concentration was 56.79 mg/L, the pH value was 8.40, the ORP value was −274 mV, and the SO4 2− utilization rate was 58.04%. The RSM results showed that temperature, ambient pH and COD/SO4 2− had a significant effect on hydrogen sulfide production, and the degree of effect was: ambient pH > temperature > COD/SO4 2−

    Effects of Mixed Planting on Machine Transplanting Adaptability and Grain Yield of Hybrid Rice

    No full text
    Because the current hybrid rice machine transplanting sowing quantity is too large and the high rate of missing hills or poor seedling quality during mechanical transplanting, the mechanized planting of hybrid rice is limited, which results in significant hindrance of large-scale planting of hybrid rice in China. In this study, a mixed sowing technology (replacement of a portion of hybrid rice seeds with conventional rice seeds) in seedling cultivation was adopted to determine the appropriate variety combinations and conventional rice sowing quantity using a variety combination experiment and sowing quantity experiments, respectively. The results of the variety combination experiment showed that combinations of Changyou 4 mixed with Nanjing 5055, and Yuanliangyou mixed with Yangdao 6 could reduce the sowing quantity of hybrid rice, improve the quality of machine transplanting, and not reduce the grain yield. The results of the conventional rice sowing quantity experiment showed that with the increase in conventional rice sowing quantity, the seedling quality, spikelet per panicle, and filled kernel percentage decreased, and the mechanical transplanting quality improved. Compared with pure sowing hybrid rice, the grain yield was not significantly different in the japonica rice treatment when the sowing quantity of Nanjing 5055 was more than 75 g/tray and Yangdao 6 was more than 60 g/tray. With the increase in conventional rice sowing quantity, the missing hill rate decreased significantly and the seedling density increased significantly, so that the panicle number was also improved, which might have compensated the reduction in seedling quality, spikelet per panicle, and filled kernel percentage. As a whole, 90 g Nanjing 5055 seeds mixed with 30 g Changyou 4 seeds per tray and 75 g Yangdao 6 seeds mixed with 30 g Yuanliangyou seeds per tray were suitable sowing quantities for mixed planting that could ensure strong seedlings and better mechanical transplanting quality, while reducing the cost (reduce the sowing quantity of hybrid rice and conventional rice) without reducing the grain yield
    corecore