6 research outputs found

    Learning latent representations for operational nitrogen response rate prediction

    No full text
    Learning latent representations has aided operational decision-making in several disciplines. Its advantages include uncovering hidden interactions in data and automating procedures which were performed manually in the past. Representation learning is also being adopted by earth and environmental sciences. However, there are still subfields that depend on manual feature engineering based on expert knowledge and the use of algorithms which do not utilize the latent space. Relying on those techniques can inhibit operational decision-making since they impose data constraints and inhibit automation. In this work, we adopt a case study for nitrogen response rate prediction and examine if representation learning can be used for operational use. We compare a Multilayer Perceptron, an Autoencoder, and a dual-head Autoencoder with a reference Random Forest model for nitrogen response rate prediction. To bring the predictions closer to an operational setting we assume absence of future weather data, and we are evaluating the models using error metrics and a domain-derived error threshold. The results show that learning latent representations can provide operational nitrogen response rate predictions by offering performance equal and sometimes better than the reference model

    Introducing digital twins to agriculture

    No full text
    Digital twins are being adopted by increasingly more industries, transforming them and bringing new opportunities. Digital twins provide previously unheard levels of control over physical entities and help to manage complex systems by integrating an array of technologies. Recently, agriculture has seen several technological advancements, but it is still unclear if this community is making an effort to adopt digital twins in its operations. In this work, we employ a mixed-method approach to investigate the added-value of digital twins for agriculture. We examine the extent of digital twin adoption in agriculture, shed light on the concept and the benefits it brings, and provide an application-based roadmap for a more extended adoption. We report a literature review of digital twins in agriculture, covering years 2017-2020. We identify 28 use cases, and compare them with use cases in other disciplines. We compare reported benefits, service categories, and technology readiness levels to assess the level of digital twin adoption in agriculture. We distill the digital twin characteristics that can provide added-value to agriculture from the examined digital twin applications in agriculture and in other disciplines. Then, inspired by digital twin applications in other disciplines, we propose a roadmap for digital twins in agriculture, consisting of examples of growing complexity. We conclude this paper by identifying the distinctive characteristics of agricultural digital twins.</p

    Location-specific vs location-agnostic machine learning metamodels for predicting pasture nitrogen response rate

    No full text
    In this work we compare the performance of a location-specific and a location-agnostic machine learning metamodel for crop nitrogen response rate prediction. We conduct a case study for grass-only pasture in several locations in New Zealand. We generate a large dataset of APSIM simulation outputs and train machine learning models based on that data. Initially, we examine how the models perform at the location where the location-specific model was trained. We then perform the Mann–Whitney U test to see if the difference in the predictions of the two models (i.e. location-specific and location-agnostic) is significant. We expand this procedure to other locations to investigate the generalization capability of the models. We find that there is no statistically significant difference in the predictions of the two models. This is both interesting and useful because the location-agnostic model generalizes better than the location-specific model which means that it can be applied to virgin sites with similar confidence to experienced sites

    Machine learning for large-scale crop yield forecasting

    No full text
    Many studies have applied machine learning to crop yield prediction with a focus on specific case studies. The data and methods they used may not be transferable to other crops and locations. On the other hand, operational large-scale systems, such as the European Commission's MARS Crop Yield Forecasting System (MCYFS), do not use machine learning. Machine learning is a promising method especially when large amounts of data are being collected and published. We combined agronomic principles of crop modeling with machine learning to build a machine learning baseline for large-scale crop yield forecasting. The baseline is a workflow emphasizing correctness, modularity and reusability. For correctness, we focused on designing explainable predictors or features (in relation to crop growth and development) and applying machine learning without information leakage. We created features using crop simulation outputs and weather, remote sensing and soil data from the MCYFS database. We emphasized a modular and reusable workflow to support different crops and countries with small configuration changes. The workflow can be used to run repeatable experiments (e.g. early season or end of season predictions) using standard input data to obtain reproducible results. The results serve as a starting point for further optimizations. In our case studies, we predicted yield at regional level for five crops (soft wheat, spring barley, sunflower, sugar beet, potatoes) and three countries (the Netherlands (NL), Germany (DE), France (FR)). We compared the performance with a simple method with no prediction skill, which either predicted a linear yield trend or the average of the training set. We also aggregated the predictions to the national level and compared with past MCYFS forecasts. The normalized RMSE (NRMSE) for early season predictions (30 days after planting) were comparable for NL (all crops), DE (all except soft wheat) and FR (soft wheat, spring barley, sunflower). For example, NRMSE was 7.87 for soft wheat (NL) (6.32 for MCYFS) and 8.21 for sugar beet (DE) (8.79 for MCYFS). In contrast, NRMSEs for soft wheat (DE), sugar beet (FR) and potatoes (FR) were twice as much compared to MCYFS. NRMSEs for end of season were still comparable to MCYFS for NL, but worse for DE and FR. The baseline can be improved by adding new data sources, designing more predictive features and evaluating different machine learning algorithms. The baseline will motivate the use of machine learning in large-scale crop yield forecasting
    corecore