70 research outputs found

    Treatment-limiting renal tubulopathy in patients treated with tenofovir disoproxil fumarate.

    Get PDF
    OBJECTIVES: Tenofovir disoproxil fumarate (TDF) is widely used in the treatment or prevention of HIV and hepatitis B infection. TDF may cause renal tubulopathy in a small proportion of recipients. We aimed to study the risk factors for developing severe renal tubulopathy. METHODS: We conducted an observational cohort study with retrospective identification of cases of treatment-limiting tubulopathy during TDF exposure. We used multivariate Poisson regression analysis to identify risk factors for tubulopathy, and mixed effects models to analyse adjusted estimated glomerular filtration rate (eGFR) slopes. RESULTS: Between October 2002 and June 2013, 60 (0.4%) of 15,983 patients who had received TDF developed tubulopathy after a median exposure of 44.1 (IQR 20.4, 64.4) months. Tubulopathy cases were predominantly male (92%), of white ethnicity (93%), and exposed to antiretroviral regimens that contained boosted protease inhibitors (PI, 90%). In multivariate analysis, age, ethnicity, CD4 cell count and use of didanosine or PI were significantly associated with tubulopathy. Tubulopathy cases experienced significantly greater eGFR decline while receiving TDF than the comparator group (-6.60 [-7.70, -5.50] vs. -0.34 [-0.43, -0.26] mL/min/1.73 m2/year, p < 0.0001). CONCLUSIONS: Older age, white ethnicity, immunodeficiency and co-administration of ddI and PI were risk factors for tubulopathy in patients who received TDF-containing antiretroviral therapy. The presence of rapid eGFR decline identified TDF recipients at increased risk of tubulopathy

    Basic science232. Certolizumab pegol prevents pro-inflammatory alterations in endothelial cell function

    Get PDF
    Background: Cardiovascular disease is a major comorbidity of rheumatoid arthritis (RA) and a leading cause of death. Chronic systemic inflammation involving tumour necrosis factor alpha (TNF) could contribute to endothelial activation and atherogenesis. A number of anti-TNF therapies are in current use for the treatment of RA, including certolizumab pegol (CZP), (Cimzia ®; UCB, Belgium). Anti-TNF therapy has been associated with reduced clinical cardiovascular disease risk and ameliorated vascular function in RA patients. However, the specific effects of TNF inhibitors on endothelial cell function are largely unknown. Our aim was to investigate the mechanisms underpinning CZP effects on TNF-activated human endothelial cells. Methods: Human aortic endothelial cells (HAoECs) were cultured in vitro and exposed to a) TNF alone, b) TNF plus CZP, or c) neither agent. Microarray analysis was used to examine the transcriptional profile of cells treated for 6 hrs and quantitative polymerase chain reaction (qPCR) analysed gene expression at 1, 3, 6 and 24 hrs. NF-κB localization and IκB degradation were investigated using immunocytochemistry, high content analysis and western blotting. Flow cytometry was conducted to detect microparticle release from HAoECs. Results: Transcriptional profiling revealed that while TNF alone had strong effects on endothelial gene expression, TNF and CZP in combination produced a global gene expression pattern similar to untreated control. The two most highly up-regulated genes in response to TNF treatment were adhesion molecules E-selectin and VCAM-1 (q 0.2 compared to control; p > 0.05 compared to TNF alone). The NF-κB pathway was confirmed as a downstream target of TNF-induced HAoEC activation, via nuclear translocation of NF-κB and degradation of IκB, effects which were abolished by treatment with CZP. In addition, flow cytometry detected an increased production of endothelial microparticles in TNF-activated HAoECs, which was prevented by treatment with CZP. Conclusions: We have found at a cellular level that a clinically available TNF inhibitor, CZP reduces the expression of adhesion molecule expression, and prevents TNF-induced activation of the NF-κB pathway. Furthermore, CZP prevents the production of microparticles by activated endothelial cells. This could be central to the prevention of inflammatory environments underlying these conditions and measurement of microparticles has potential as a novel prognostic marker for future cardiovascular events in this patient group. Disclosure statement: Y.A. received a research grant from UCB. I.B. received a research grant from UCB. S.H. received a research grant from UCB. All other authors have declared no conflicts of interes

    Б1.Б.17.1 Основы природопользования 2016 очная

    Get PDF
    Background: Antiretroviral therapy in HIV-positive patients leads to insulin resistance which is central to the pathogenesis of various metabolic abnormalities and cardiovascular disease seen in this patient group. We have investigated the dose–response relationship of telmisartan, an antihypertensive, on adipocytes in vitro in order to determine whether it may have metabolic beneficial effects. Methods: Using in vitro chronic toxicity models (3T3-F442A murine and primary human adipocytes), we evaluated the effects of different concentrations of telmisartan on adipocyte differentiation and adipogenic gene expression using lipid accumulation assays and real-time polymerase chain reaction, respectively. Adipokine secretion and expression of insulin signalling mediators were evaluated using enzyme-linked immunosorbent assays. Results: Telmisartan partially reversed the deleterious effects of antiretrovirals on adipocyte lipid accumulation, expression of adipogenic regulators (peroxisome proliferator receptor-gamma and lipin 1), adipokine secretion and expression of the insulin signalling mediator pAktSer473. The metabolic effects of telmisartan followed a non-monotonic response with the maximal effect observed at 5 µM in the primary human adipocyte model. Conclusion: Telmisartan has beneficial metabolic effects in adipocytes in vitro, but its potential to reduce antiretroviral-induced cardiometabolic disease in HIV-infected individuals needs to be evaluated in a well-designed adequately powered clinical trial

    TAILoR (TelmisArtan and InsuLin Resistance in Human Immunodeficiency Virus [HIV]):An Adaptive-design, Dose-ranging Phase IIb Randomized Trial of Telmisartan for the Reduction of Insulin Resistance in HIV-positive Individuals on Combination Antiretroviral Therapy

    No full text
    Background Combination antiretroviral therapy results in metabolic abnormalities which increase cardiovascular disease risk. We evaluated whether telmisartan reduces insulin resistance in human immunodeficiency virus (HIV)–positive individuals on antiretrovirals. Methods We conducted a multicenter, randomized, open-label, dose-ranging controlled trial of telmisartan. Participants with HIV infection receiving combination antiretroviral therapy were randomized equally to either no intervention (control) or 20, 40, or 80 mg telmisartan once daily. The adaptive design allowed testing of all dose(s) of telmisartan in stage I, with the promising dose(s) being taken into stage II. The primary outcome measure was reduction in homeostasis model assessment of insulin resistance (HOMA-IR) at 24 weeks. Results A total of 377 patients were recruited. In stage I, 48, 49, 47, and 45 patients were randomized to control and 20, 40, and 80 mg telmisartan, respectively (total n = 189). At the interim analysis, 80 mg telmisartan was taken forward into stage II. At the end of stage II (n = 105, control; 106, 80-mg arm), there were no differences in HOMA-IR (estimated effect, 0.007; SE, 0.106) at 24 weeks between the telmisartan (80 mg) and nonintervention arms. Longitudinal analysis over 48 weeks showed no change in HOMA-IR, lipid or adipokine levels. There were significant (P ≤ .05), but marginal, improvements in revised Quantitative Insulin Sensitivity Check Index (QUICKI) (0.004) and plasma hs-CRP (−0.222 mg/L) and reduction in liver fat content (1.714 mean reduction; P = .005). Conclusions No significant effect of telmisartan was demonstrated on the primary outcome (HOMA-IR), but there were marginal improvements with some secondary outcome measures. Further studies in this population are warranted to identify novel strategies for preventing cardiovascular morbidity and mortality

    Repurposing anticancer drugs for COVID-19-induced inflammation, immune dysfunction, and coagulopathy

    No full text
    Three cardinal manifestations of neoplasia, namely inflammation, immune dysfunction, and coagulopathy are also seen in patients with severe SARS-CoV-2 infection, providing a biological rationale for testing selected anticancer drugs for their ability to control the symptoms and/or modify the course of COVID-19.SCOPUS: no.jinfo:eu-repo/semantics/publishe
    corecore