36 research outputs found

    Changes in the relative importance of biogenic isoprene and Soil NOx emissions on ozone concentrations in nonattainment areas of the United States

    Get PDF
    Reductions in anthropogenic emissions have drawn increasing attention to the role of the biosphere in O3 production chemistry in U.S. cities. We report the results of chemical transport model sensitivity simulations exploring the relative impacts of biogenic isoprene and soil nitrogen oxides (NOx) emissions on O3 and its temporal variability. We compare scenarios with high and low anthropogenic NOx emissions representing the reductions that have occurred in recent decades. As expected, summertime O3 concentrations become less sensitive to perturbations in biogenic isoprene emissions as anthropogenic NOx emissions decline. However, we demonstrate for the first time that across policy relevant O3 nonattainment areas of the United States, O3 becomes more sensitive to perturbations in soil NOx emissions than to identical perturbations in isoprene emissions. We show that interannual variability in soil NOx emissions may now have larger impacts on interannual O3 variability than isoprene emissions in many areas where the latter would have dominated in the recent past.Published versio

    Nitrogen cycling microbiomes are structured by plant mycorrhizal associations with consequences for nitrogen oxide fluxes in forests

    Get PDF
    Volatile nitrogen oxides (N2O, NO, NO2, HONO, 
) can negatively impact climate, air quality, and human health. Using soils collected from temperate forests across the eastern United States, we show microbial communities involved in nitrogen (N) cycling are structured, in large part, by the composition of overstory trees, leading to predictable N‐cycling syndromes, with consequences for emissions of volatile nitrogen oxides to air. Trees associating with arbuscular mycorrhizal (AM) fungi promote soil microbial communities with higher N‐cycle potential and activity, relative to microbial communities in soils dominated by trees associating with ectomycorrhizal (ECM) fungi. Metagenomic analysis and gene expression studies reveal a 5 and 3.5 times greater estimated N‐cycle gene and transcript copy numbers, respectively, in AM relative to ECM soil. Furthermore, we observe a 60% linear decrease in volatile reactive nitrogen gas flux (NOy ≡ NO, NO2, HONO) as ECM tree abundance increases. Compared to oxic conditions, gas flux potential of N2O and NO increase significantly under anoxic conditions for AM soil (30‐ and 120‐fold increase), but not ECM soil—likely owing to small concentrations of available substrate () in ECM soil. Linear mixed effects modeling shows that ECM tree abundance, microbial process rates, and geographic location are primarily responsible for variation in peak potential NOy flux. Given that nearly all tree species associate with either AM or ECM fungi, our results indicate that the consequences of tree species shifts associated with global change may have predictable consequences for soil N cycling

    Field observational constraints on the controllers in glyoxal (CHOCHO) reactive uptake to aerosol

    Get PDF
    Glyoxal (CHOCHO), the simplest dicarbonyl in the troposphere, is a potential precursor for secondary organic aerosol (SOA) and brown carbon (BrC) affecting air quality and climate. The airborne measurement of CHOCHO concentrations during the KORUS-AQ (KORea–US Air Quality study) campaign in 2016 enables detailed quantification of loss mechanisms pertaining to SOA formation in the real atmosphere. The production of this molecule was mainly from oxidation of aromatics (59 %) initiated by hydroxyl radical (OH). CHOCHO loss to aerosol was found to be the most important removal path (69 %) and contributed to roughly ∌ 20 % (3.7 ”g sm−3 ppmv−1 h−1, normalized with excess CO) of SOA growth in the first 6 h in Seoul Metropolitan Area. A reactive uptake coefficient (Îł) of ∌ 0.008 best represents the loss of CHOCHO by surface uptake during the campaign. To our knowledge, we show the first field observation of aerosol surface-area-dependent (Asurf) CHOCHO uptake, which diverges from the simple surface uptake assumption as Asurf increases in ambient condition. Specifically, under the low (high) aerosol loading, the CHOCHO effective uptake rate coefficient, keff,uptake, linearly increases (levels off) with Asurf; thus, the irreversible surface uptake is a reasonable (unreasonable) approximation for simulating CHOCHO loss to aerosol. Dependence on photochemical impact and changes in the chemical and physical aerosol properties “free water”, as well as aerosol viscosity, are discussed as other possible factors influencing CHOCHO uptake rate. Our inferred Henry's law coefficient of CHOCHO, 7.0×108 M atm−1, is ∌ 2 orders of magnitude higher than those estimated from salting-in effects constrained by inorganic salts only consistent with laboratory findings that show similar high partitioning into water-soluble organics, which urges more understanding on CHOCHO solubility under real atmospheric conditions

    Modeling NH4NO3 over the San Joaquin Valley During the 2013 DISCOVER-AQ Campaign

    Get PDF
    The San Joaquin Valley (SJV) of California experiences high concentrations of PM2.5 (particulate matter with aerodynamic diameter 2.5 m) during episodes of meteorological stagnation in winter. Modeling PM2.5 NH4NO3 during these episodes is challenging because it involves simulating meteorology in complex terrain under low wind speed and vertically stratified conditions, representing complex pollutant emissions distributions, and simulating daytime and nighttime chemistry that can be influenced by the mixing of urban and rural air masses. A rich dataset of observations related to NH4NO3 formation was acquired during multiple periods of elevated NH4NO3 during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) field campaign in SJV in January and February 2013. Here, NH4NO3 is simulated during the SJV DISCOVER-AQ study period with the Community Multiscale Air Quality (CMAQ) model version 5.1, predictions are evaluated with the DISCOVER-AQ dataset, and process analysis modeling is used to quantify HNO3 production rates. Simulated NO3- generally agrees well with routine monitoring of 24-h average NO3-, but comparisons with hourly average NO3- measurements in Fresno revealed differences at higher time resolution. Predictions of gas-particle partitioning of total nitrate (HNO3 + NO3-) and NHx (NH3 + NH4+) generally agreed well with measurements in Fresno, although partitioning of total nitrate to HNO3 was sometimes overestimated at low relative humidity in afternoon. Gas-particle partitioning results indicate that NH4NO3 formation is limited by HNO3 availability in both the model and ambient. NH3 mixing ratios are underestimated, particularly in areas with large agricultural activity, and the spatial allocation of NH3 emissions could benefit from additional work, especially near Hanford. HNO3 production via daytime and nighttime pathways is reasonably consistent with the conceptual model of NH4NO3 formation in SJV, and production peaked aloft between about 160 and 240 m in the model. During a period of elevated NH4NO3, the model predicted that the OH + NO2 pathway contributed 46% to total HNO3 production in SJV and the N2O5 heterogeneous hydrolysis pathway contributed 54%. The relative importance of the OH + NO2 pathway for HNO3 production is predicted to increase as NOx emissions decrease

    Secondary organic aerosol production from local emissions dominates the organic aerosol budget over Seoul, South Korea, during KORUS-AQ

    Get PDF
    Organic aerosol (OA) is an important fraction of submicron aerosols. However, it is challenging to predict and attribute the specific organic compounds and sources that lead to observed OA loadings, largely due to contributions from secondary production. This is especially true for megacities surrounded by numerous regional sources that create an OA background. Here, we utilize in situ gas and aerosol observations collected on board the NASA DC-8 during the NASA–NIER KORUS-AQ (Korea–United States Air Quality) campaign to investigate the sources and hydrocarbon precursors that led to the secondary OA (SOA) production observed over Seoul. First, we investigate the contribution of transported OA to total loadings observed over Seoul by using observations over the Yellow Sea coupled to FLEXPART Lagrangian simulations. During KORUS-AQ, the average OA loading advected into Seoul was ∌1–3 ”g sm−3. Second, taking this background into account, the dilution-corrected SOA concentration observed over Seoul was ∌140 ”gsm−3ppmv−1 at 0.5 equivalent photochemical days. This value is at the high end of what has been observed in other megacities around the world (20–70 ”gsm−3ppmv−1 at 0.5 equivalent days). For the average OA concentration observed over Seoul (13 ”g sm−3), it is clear that production of SOA from locally emitted precursors is the major source in the region. The importance of local SOA production was supported by the following observations. (1) FLEXPART source contribution calculations indicate any hydrocarbons with a lifetime of less than 1 day, which are shown to dominate the observed SOA production, mainly originate from South Korea. (2) SOA correlated strongly with other secondary photochemical species, including short-lived species (formaldehyde, peroxy acetyl nitrate, sum of acyl peroxy nitrates, dihydroxytoluene, and nitrate aerosol). (3) Results from an airborne oxidation flow reactor (OFR), flown for the first time, show a factor of 4.5 increase in potential SOA concentrations over Seoul versus over the Yellow Sea, a region where background air masses that are advected into Seoul can be measured. (4) Box model simulations reproduce SOA observed over Seoul within 11 % on average and suggest that short-lived hydrocarbons (i.e., xylenes, trimethylbenzenes, and semi-volatile and intermediate-volatility compounds) were the main SOA precursors over Seoul. Toluene alone contributes 9 % of the modeled SOA over Seoul. Finally, along with these results, we use the metric ΔOA/ΔCO2 to examine the amount of OA produced per fuel consumed in a megacity, which shows less variability across the world than ΔOA∕ΔCO

    Characterization, sources and reactivity of volatile organic compounds (VOCs) in Seoul and surrounding regions during KORUS-AQ

    Get PDF
    The Korea-United States Air Quality Study (KORUS-AQ) took place in spring 2016 to better understand air pollution in Korea. In support of KORUS-AQ, 2554 whole air samples (WAS) were collected aboard the NASA DC-8 research aircraft and analyzed for 82 C₁–C₁₀ volatile organic compounds (VOCs) using multi-column gas chromatography. Together with fast-response measurements from other groups, the air samples were used to characterize the VOC composition in Seoul and surrounding regions, determine which VOCs are major ozone precursors in Seoul, and identify the sources of these reactive VOCs. (1) The WAS VOCs showed distinct signatures depending on their source origins. Air collected over Seoul had abundant ethane, propane, toluene and n-butane while plumes from the Daesan petrochemical complex were rich in ethene, C₂–C₆ alkanes and benzene. Carbonyl sulfide (COS), CFC-113, CFC-114, carbon tetrachloride (CCl₄) and 1,2-dichloroethane were good tracers of air originating from China. CFC-11 was also elevated in air from China but was surprisingly more elevated in air over Seoul. (2) Methanol, isoprene, toluene, xylenes and ethene were strong individual contributors to OH reactivity in Seoul. However methanol contributed less to ozone formation based on photochemical box modeling, which better accounts for radical chemistry. (3) Positive Matrix Factorization (PMF) and other techniques indicated a mix of VOC source influences in Seoul, including solvents, traffic, biogenic, and long-range transport. The solvent and traffic sources were roughly equal using PMF, and the solvents source was stronger in the KORUS-AQ emission inventory. Based on PMF, ethene and propene were primarily associated with traffic, and toluene, ethylbenzene and xylenes with solvents, especially non-paint solvents for toluene and paint solvents for ethylbenzene and xylenes. This suggests that VOC control strategies in Seoul could continue to target vehicle exhaust and paint solvents, with additional regulations to limit the VOC content in a variety of non-paint solvents
    corecore