198 research outputs found

    Immune-mediated loss of transgene expression from virally transduced brain cells is irreversible, mediated by IFNγ, perforin, and TNFα, and due to the elimination of transduced cells

    Get PDF
    The adaptive immune response to viral vectors reduces vector-mediated transgene expression from the brain. It is unknown, however, whether this loss is caused by functional downregulation of transgene expression or death of transduced cells. Herein, we demonstrate that during the elimination of transgene expression, the brain becomes infiltrated with CD4 and CD8 T cells and that these T cells are necessary for transgene elimination. Further, the loss of transgene-expressing brain cells fails to occur in the absence of IFNγ, perforin, and TNFα receptor. Two methods to induce severe immune suppression in immunized animals also fail to restitute transgene expression, demonstrating the irreversibility of this process. The need for cytotoxic molecules and the irreversibility of the reduction in transgene expression suggested to us that elimination of transduced cells is responsible for the loss of transgene expression. A new experimental paradigm that discriminates between downregulation of transgene expression and the elimination of transduced cells demonstrates that transduced cells are lost from the brain upon the induction of a specific antiviral immune response. We conclude that the anti-adenoviral immune response reduces transgene expression in the brain through loss of transduced cellsFil: Zirger, Jeffrey M.. Cedars Sinai Medical Center; Estados Unidos. University of California at Los Angeles. School of Medicine; Estados UnidosFil: Puntel, Mariana. University of California at Los Angeles. School of Medicine; Estados Unidos. Cedars Sinai Medical Center; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bergeron, Josee. Cedars Sinai Medical Center; Estados Unidos. University of California at Los Angeles. School of Medicine; Estados UnidosFil: Wibowo, Mia. University of California at Los Angeles. School of Medicine; Estados Unidos. Cedars Sinai Medical Center; Estados UnidosFil: Moridzadeh, Rameen. University of California at Los Angeles. School of Medicine; Estados Unidos. Cedars Sinai Medical Center; Estados UnidosFil: Bondale, Niyati. Cedars Sinai Medical Center; Estados Unidos. University of California at Los Angeles. School of Medicine; Estados UnidosFil: Barcia, Carlos. Cedars Sinai Medical Center; Estados Unidos. University of California at Los Angeles. School of Medicine; Estados UnidosFil: Kroeger, Kurt M.. University of California at Los Angeles. School of Medicine; Estados Unidos. Cedars Sinai Medical Center; Estados UnidosFil: Liu, Chunyan. University of California at Los Angeles. School of Medicine; Estados Unidos. Cedars Sinai Medical Center; Estados UnidosFil: Castro, Maria Graciela. University of California at Los Angeles. School of Medicine; Estados Unidos. Cedars Sinai Medical Center; Estados Unidos. University of Michigan; Estados UnidosFil: Lowenstein, Pedro R.. Cedars Sinai Medical Center; Estados Unidos. University of California at Los Angeles. School of Medicine; Estados Unidos. University of Michigan; Estados Unido

    Development of a Scalable Edge-Cloud Computing Based Variable Rate Irrigation Scheduling Framework

    Get PDF
    Currently, variable-rate precision irrigation (VRI) scheduling methods require large amounts of data and processing time to accurately determine crop water demands and spatially process those demands into an irrigation prescription. Unfortunately, irrigated crops continue to develop additional water stress when the previously collected data is being processed. Machine learning is a helpful tool, but handling and transmitting large datasets can be problematic; more rural areas may not have access to necessary wireless data transmission infrastructure to support cloud interaction. The introduction of “edge-cloud” processing to agricultural applications has shown to be effective at increasing data processing speed and reducing the amount of data transmission to remote processing computers or base stations. In irrigation in particular, edge-cloud computing has so far had limited implementation. Therefore, an initial logic flow concept has been developed to effectively implement this new processing technique for VRI. Utilizing edge-cloud computer nodes in the field, autonomous data collection devices such as center pivot-mounted infrared canopy thermometers, soil moisture sensors, local weather stations, and UAVs could transmit highly localized crop data to the edge-cloud computer for processing. The edge computer Following the implementation of an irrigation strategy created by the edge-cloud computer with a machine learning model, data would be transmitted to the cloud (requiring transmission of only minimal model parameters), resulting in a feedback loop for continual improvement of the global model on the cloud (federated learning). VRI prescription maps from the SETMI model were used as the training data for training the machine learning model

    Reflexiones acerca de la evaluación en proceso del trabajo práctico de la cátedra Teoría del diseño y la gestión urbana

    Get PDF
    La asignatura se ubica en el 4to. Nivel de la Carrera de Arquitectura, de cursado obligatorio. En cada ciclo se aborda un tema “integrador” que opera como un eje transversal de análisis de las temáticas urbanas y permite aplicar los contenidos teóricos de la materia. La propuesta de la Cátedra, tiene como fundamento pedagógico el Aprendizaje Significativo, teniendo presente que los alumnos puedan construir significados y atribuir sentido a lo que aprenden, y que a su vez contribuya al propio crecimiento personal. En función de ello, el alumno busca el significado de la tarea e intenta hallar sentido a lo que aprende, y encuentra que está relacionado con lo que ve y le rodea y se esfuerza por comprender. En este contexto el estudiante tiene que: comprender los objetivos; ser capaz de planificar lo que va a realizar; entender los criterios de evaluación; identificar y superar sus errores. Esto se posibilita mediante la regulación continua, que se efectiviza a través de los procesos de comunicación entre el profesor y los alumnos, y los alumnos entre ellos. Finalmente se demuestra la planificación de los Trabajos Prácticos teniendo en cuenta que la construcción del conocimiento requiere de la ayuda pedagógica del docente, y que el alumno logra conocimientos en función de las actividades que desarrolla, para lo cual diseña una evaluación en proceso, con el objeto de verificarlo en las diferentes etapas, planteando diversas estrategias de exposición con el objeto de socializar los productos parciales entre todos.Área temática 4: Ciudad, Territorio y Paisaje. Gestión - Eje EnseñanzaFacultad de Arquitectura y Urbanism

    Protection induced by a glycoprotein E-deleted bovine herpesvirus type 1 marker strain used either as an inactivated or live attenuated vaccine in cattle

    Get PDF
    BACKGROUND: Bovine herpesvirus type 1 (BoHV-1) is the causative agent of respiratory and genital tract infections; causing a high economic loss in all continents. Use of marker vaccines in IBR eradication programs is widely accepted since it allows for protection of the animals against the disease while adding the possibility of differentiating vaccinated from infected animals.The aim of the present study was the development and evaluation of safety and efficacy of a glycoprotein E-deleted (gE-) BoHV-1 marker vaccine strain (BoHV-1ΔgEβgal) generated by homologous recombination, replacing the viral gE gene with the β-galactosidase (βgal) gene. RESULTS: In vitro growth kinetics of the BoHV-1ΔgEβgal virus was similar to BoHV-1 LA. The immune response triggered by the new recombinant strain in cattle was characterized both as live attenuated vaccine (LAV) and as an inactivated vaccine. BoHV-1ΔgEβgal was highly immunogenic in both formulations, inducing specific humoral and cellular immune responses. Antibody titers found in animals vaccinated with the inactivated vaccine based on BoHV-1ΔgEβgal was similar to the titers found for the control vaccine (BoHV-1 LA). In the same way, titers of inactivated vaccine groups were significantly higher than any of the LAV immunized groups, independently of the inoculation route (p < 0.001). Levels of IFN-γ were significantly higher (p < 0.001) in those animals that received the LAV compared to those that received the inactivated vaccine. BoHV-1ΔgEβgal exhibited an evident attenuation when administered as a LAV; no virus was detected in nasal secretions of vaccinated or sentinel animals during the post-vaccination period. BoHV-1ΔgEβgal, when used in either formulation, elicited an efficient immune response that protected animals against challenge with virulent wild-type BoHV-1. Also, the deletion of the gE gene served as an immunological marker to differentiate vaccinated animals from infected animals. All animals vaccinated with the BoHV-1ΔgE βgal strain were protected against disease after challenge and shed significantly less virus than control calves, regardless of the route and formulation they were inoculated. CONCLUSIONS: Based on its attenuation, immunogenicity and protective effect after challenge, BoHV-1ΔgEβgal virus is an efficient and safe vaccine candidate when used either as inactivated or as live attenuated forms.Fil: Romera, Sonia. Instituto Nacional de Tecnologia Agropecuaria. Centro Nacional de Investigaciones Agropecuarias. Centro de Investigación de Ciencias Veterinarias y Agronomicas; Argentina. Universidad del Salvador; ArgentinaFil: Puntel, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaFil: Quattrocchi, Valeria. Instituto Nacional de Tecnologia Agropecuaria. Centro Nacional de Investigaciones Agropecuarias. Centro de Investigación de Ciencias Veterinarias y Agronomicas; ArgentinaFil: del Medico Zajac, Maria Paula. Instituto Nacional de Tecnologia Agropecuaria. Centro Nacional de Investigaciones Agropecuarias. Centro de Investigación de Ciencias Veterinarias y Agronomicas; ArgentinaFil: Zamorano, Patricia Ines. Instituto Nacional de Tecnologia Agropecuaria. Centro Nacional de Investigaciones Agropecuarias. Centro de Investigación de Ciencias Veterinarias y Agronomicas; Argentina. Universidad del Salvador; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Blanco Viera, Javier. Instituto Nacional de Tecnologia Agropecuaria. Centro Nacional de Investigaciones Agropecuarias. Centro de Investigación de Ciencias Veterinarias y Agronomicas; ArgentinaFil: Carrillo, Consuelo. USDA. Plum Island Animal Disease Center; Estados UnidosFil: Chowdhury, Shafiqul. Louisiana State University. Department of Pathobiological Sciences; Estados UnidosFil: Borca, Manuel V.. USDA. Plum Island Animal Disease Center; Estados UnidosFil: Sadir, Ana M.. Instituto Nacional de Tecnologia Agropecuaria. Centro Nacional de Investigaciones Agropecuarias. Centro de Investigación de Ciencias Veterinarias y Agronomicas; Argentina. Universidad del Salvador; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    How digital is agriculture in a subset of countries from South America? Adoption and limitations

    Get PDF
    Digital agriculture (DA) can contribute solutions to meet an increase in healthy, nutritious, and affordable food demands in an efficient and sustainable way. South America (SA) is one of the main grain and protein producers in the world but the status of DA in the region is unknown. A systematic review and case studies from Brazil, Argentina, Uruguay, and Chile were conducted to address the following objectives: (1) quantify adoption of existing DA technologies, (2) identify limitations for DA adoption; and (3) summarise existing metrics to benchmark DA benefits. Level of DA adoption was led by Brazil and Argentina followed by Uruguay and at a slower rate, Chile. GPS guidance systems, mapping tools, mobile apps and remote sensing were the most adopted DA technologies in SA. The most reported limitations to adoption were technology cost, lack of training, limited number of companies providing services, and unclear benefits from DA. Across the case studies, there was no clear definition of DA. To mitigate some of these limitations, our findings suggest the need for a DA educational curriculum that can fulfill the demand for job skills such as data processing, analysis and interpretation. Regional efforts are needed to standardise these metrics. This will allow stakeholders to design targeted initiatives to promote DA towards sustainability of food production in the region

    Safety Profile of Gutless Adenovirus Vectors Delivered into the Normal Brain Parenchyma: Implications for a Glioma Phase 1 Clinical Trial

    Get PDF
    Abstract Adenoviral vectors (Ads) have been evaluated in clinical trials for glioma. However, systemic immunity against the vectors can hamper therapeutic efficacy. We demonstrated that combined immunostimulation and cytotoxic gene therapy provides long-term survival in preclinical glioma models. Because helper-dependent high-capacity Ads (HC-Ads) elicit sustained transgene expression, in the presence of antiadenoviral immunity, we engineered HC-Ads encoding conditional cytotoxic herpes simplex type 1 thymidine kinase and immunostimulatory cytokine Fms-like tyrosine kinase ligand-3 under the control of the TetOn system. Escalating doses of combined HC-Ads (1?108, 1?109, and 1?1010 viral particles [VP]) were delivered into the rat brain. We assessed neuropathology, biodistribution, transgene expression, systemic toxicity, and behavioral impact at acute and chronic time points after vector delivery. Histopathological analysis did not reveal any evidence of toxicity or long-term inflammation at the lower doses tested. Vector genomes were restricted to the injection site. Serum chemistry did not uncover adverse systemic side effects at any of the doses tested. Taken together, our data indicate that doses of up to 1?109 VP of each HC-Ad can be safely administered into the normal brain. This comprehensive toxicity and biodistribution study will lay the foundations for implementation of a phase 1 clinical trial for GBM using HC-Ads.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98452/1/hgtb%2E2012%2E060.pd

    Identification and Visualization of CD8+ T Cell Mediated IFN-γ Signaling in Target Cells during an Antiviral Immune Response in the Brain

    Get PDF
    CD8+ T cells infiltrate the brain during an anti-viral immune response. Within the brain CD8+ T cells recognize cells expressing target antigens, become activated, and secrete IFNγ. However, there are no methods to recognize individual cells that respond to IFNγ. Using a model that studies the effects of the systemic anti-adenoviral immune response upon brain cells infected with an adenoviral vector in mice, we describe a method that identifies individual cells that respond to IFNγ. To identify individual mouse brain cells that respond to IFNγ we constructed a series of adenoviral vectors that contain a transcriptional response element that is selectively activated by IFNγ signaling, the gamma-activated site (GAS) promoter element; the GAS element drives expression of a transgene, Cre recombinase (Ad-GAS-Cre). Upon binding of IFNγ to its receptor, the intracellular signaling cascade activates the GAS promoter, which drives expression of the transgene Cre recombinase. We demonstrate that upon activation of a systemic immune response against adenovirus, CD8+ T cells infiltrate the brain, interact with target cells, and cause an increase in the number of cells expressing Cre recombinase. This method can be used to identify, study, and eventually determine the long term fate of infected brain cells that are specifically targeted by IFNγ. The significance of this method is that it will allow to characterize the networks in the brain that respond to the specific secretion of IFNγ by anti-viral CD8+ T cells that infiltrate the brain. This will allow novel insights into the cellular and molecular responses underlying brain immune responses

    Maize and soybean root front velocity and maximum depth in Iowa, USA

    Get PDF
    Quantitative measurements of root traits can improve our understanding of how crops respond to soil and weather conditions, but such data are rare. Our objective was to quantify maximum root depth and root front velocity (RFV) for maize (Zea mays) and soybean (Glycine max) crops across a range of growing conditions in the Midwest USA. Two sets of root measurements were taken every 10–15 days: in the crop row (in-row) and between two crop rows (center-row) across six Iowa sites having different management practices such as planting dates and drainage systems, totaling 20 replicated experimental treatments. Temporal root data were best described by linear segmental functions. Maize RFV was 0.62 ± 0.2 cm d−1 until the 5th leaf stage when it increased to 3.12 ± 0.03 cm d−1 until maximum depth occurred at the 18th leaf stage (860 °Cd after planting). Similar to maize, soybean RFV was 1.19 ± 0.4 cm d−1 until the 3rd node when it increased to 3.31 ± 0.5 cm d−1 until maximum root depth occurred at the 13th node (813.6 °C d after planting). The maximum root depth was similar between crops (P \u3e 0.05) and ranged from 120 to 157 cm across 18 experimental treatments, and 89–90 cm in two experimental treatments. Root depth did not exceed the average water table (two weeks prior to start grain filling) and there was a significant relationship between maximum root depth and water table depth (R2 = 0.61; P = 0.001). Current models of root dynamics rely on temperature as the main control on root growth; our results provide strong support for this relationship (R2 \u3e 0.76; P \u3c 0.001), but suggest that water table depth should also be considered, particularly in conditions such as the Midwest USA where excess water routinely limits crop production. These results can assist crop model calibration and improvements as well as agronomic assessments and plant breeding efforts in this region

    Influence of high-dose gamma radiation and particle size on antioxidant properties of Maize ( Zea mays L.) flour

    Get PDF
    ABSTRACT Influence of high-dose gamma radiation and particle size on antioxidant properties of maize (Zea mays L.) flour was studied using response surface methodology. A central composite design based on three levels of each of particle size, in terms of mesh number (40, 60 and 80 meshes), and gamma radiation dose (25, 50 and 75 kGy) was constructed. A statistically significant dose-dependent decrease (p<0.05) in antioxidant properties of gamma irradiated flour was observed. However, an increase in the mesh number (decrease in particle size of flour) resulted in an increase in antioxidant properties. The optimum level of radiation dose to achieve maximum value of responses was found to be 50 kGy for Trolox equivalent total antioxidant activity (TETAOA), 25 kGy for iron chelating ability (ICA), 25 kGy for reducing power (RP) and 75 kGy for linoleic acid reduction capacity (LARC). However, the optimum level of mesh number to achieve desired levels of TETAOA, ICA, RP and LARC was found to be 80 meshes
    corecore