109 research outputs found

    Discovery of the Binary Pulsar PSR B1259-63 in Very-High-Energy Gamma Rays around Periastron with H.E.S.S

    Get PDF
    We report the discovery of very-high-energy (VHE) gamma-ray emission of the binary system PSR B1259-63/SS 2883 of a radio pulsar orbiting a massive, luminous Be star in a highly eccentric orbit. The observations around the 2004 periastron passage of the pulsar were performed with the four 13 m Cherenkov telescopes of the H.E.S.S. experiment, recently installed in Namibia and in full operation since December 2003. Between February and June 2004, a gamma-ray signal from the binary system was detected with a total significance above 13 sigma. The flux was found to vary significantly on timescales of days which makes PSR B1259-63 the first variable galactic source of VHE gamma-rays observed so far. Strong emission signals were observed in pre- and post-periastron phases with a flux minimum around periastron, followed by a gradual flux decrease in the months after. The measured time-averaged energy spectrum above a mean threshold energy of 380 GeV can be fitted by a simple power law F_0(E/1 TeV)^-Gamma with a photon index Gamma = 2.7+-0.2_stat+-0.2_sys and flux normalisation F_0 = (1.3+-0.1_stat+-0.3_sys) 10^-12 TeV^-1 cm^-2 s^-1. This detection of VHE gamma-rays provides unambiguous evidence for particle acceleration to multi-TeV energies in the binary system. In combination with coeval observations of the X-ray synchrotron emission by the RXTE and INTEGRAL instruments, and assuming the VHE gamma-ray emission to be produced by the inverse Compton mechanism, the magnetic field strength can be directly estimated to be of the order of 1 G.Comment: 10 pages, 8 figures, accepted in Astronomy and Astrophysics on 2 June 2005, replace: document unchanged, replaced author field in astro-ph entry - authors are all members of the H.E.S.S. collaboration and three additional authors (99+3, see document

    A low level of extragalactic background light as revealed by big gamma-rays from blazars

    Get PDF
    The diffuse extragalactic background light consists of the sum of the starlight emitted by galaxies through the history of the Universe, and it could also have an important contribution from the 'first stars', which may have formed before galaxy formation began. Direct measurements are difficult and not yet conclusive, owing to the large uncertainties caused by the bright foreground emission associated with zodiacal light1. An alternative approach2, 3, 4, 5 is to study the absorption features imprinted on the -ray spectra of distant extragalactic objects by interactions of those photons with the background light photons6. Here we report the discovery of -ray emission from the blazars7 H 2356 - 309 and 1ES 1101 - 232, at redshifts z = 0.165 and z = 0.186, respectively. Their unexpectedly hard spectra provide an upper limit on the background light at optical/near-infrared wavelengths that appears to be very close to the lower limit given by the integrated light of resolved galaxies8. The background flux at these wavelengths accordingly seems to be strongly dominated by the direct starlight from galaxies, thus excluding a large contribution from other sources—in particular from the first stars formed9. This result also indicates that intergalactic space is more transparent to -rays than previously thought

    Observation of a sudden cessation of a very-high-energy gamma-ray flare in PKS 1510-089 with H.E.S.S. and MAGIC in May 2016

    Get PDF
    The flat spectrum radio quasar (FSRQ) PKS 1510-089 is known for its complex multiwavelength behavior, and is one of only a few FSRQs detected at very high energy (VHE, E >100 GeV) -rays. VHE -ray observations with H.E.S.S. and MAGIC during late May and early June 2016 resulted in the detection of an unprecedented flare, which reveals for the first time VHE -ray intranight variability in this source. While a common variability timescale of 1.5 hr is found, there is a significant deviation near the end of the flare with a timescale of ∼ 20 min marking the cessation of the event. The peak flux is nearly two orders of magnitude above the low-level emission. For the first time, curvature is detected in the VHE -ray spectrum of PKS 1510-089, which is fully explained through absorption by the extragalactic background light. Optical R-band observations with ATOM reveal a counterpart of the -ray flare, even though the detailed flux evolution differs from the VHE lightcurve. Interestingly, a steep flux decrease is observed at the same time as the cessation of the VHE flare. In the high energy (HE, E >100 MeV) -ray band only a moderate flux increase is observed with Fermi-LAT, while the HE -ray spectrum significantly hardens up to a photon index of 1.6. A search for broad-line region (BLR) absorption features in the -ray spectrum indicates that the emission region is located outside of the BLR. Radio VLBI observations reveal a fast moving knot interacting with a standing jet feature around the time of the flare. As the standing feature is located ∼ 50 pc from the black hole, the emission region of the flare may have been located at a significant distance from the black hole. If this correlation is indeed true, VHE rays have been produced far down the jet where turbulent plasma crosses a standing shock.Accepted manuscrip

    Survey on hearing aid outcome in Switzerland: associations with type of fitting (bilateral/unilateral), level of hearing aid signal processing, and hearing loss.

    Full text link
    The present investigation further analysed results of a previously reported survey with a large sample of hearing aid owners (Bertoli et al, 2009) to determine the individual and technological factors related to hearing aid outcome. In particular the associations of hearing loss, level of signal processing, and fitting type (bilateral versus unilateral fitting) with hearing aid use, satisfaction with and management of the aid were evaluated. A sub-group with symmetrical hearing loss was analysed (n = 6027). Regular use was more frequent in bilateral users and in owners of devices with more complex signal processing, but the strongest determinant of regular use was severity of hearing loss. Satisfaction was higher in the group wearing simple devices, while fitting type and degree of hearing loss had no influence on satisfaction rates. Moderate and severe hearing loss was associated more frequently with poor management of the aid than mild hearing loss. It was concluded that bilateral amplification and advanced signal processing features may contribute to successful hearing aid fitting, but the resulting differences must be considered to be relatively small

    Very Long Baseline Polarimetric monitoring at 15 GHz of the TeV blazar Markarian 421

    No full text
    Thanks to high resolution radio observations it is possible to obtain a direct imaging of the innermost regions of Active Galactic Nuclei; in particular, it is possible to investigate about the jet's morphology and any proper motions, and the time evolution of physical parameters, such as flux densities and spectral index. Furthermore, with the study of the polarization properties, it is possible to obtain important information about the magnetic field structure and the emission mechanisms. In this work we present recent results about the nearby (z=0.031) TeV blazar Mrk 421. We analyzed data obtained with the Very Long Baseline Array (VLBA),both in total and polarized intensity, at twelve epochs (one observation per month from January to December 2011) at 15, 24 and 43 GHz, in the context of a broadband campaign from the radio to gamma-ray. We investigate the inner jet structure on parsec scale through the study of model-fit components for each epoch. At these frequencies the source shows a compact (about 0.13 mas, or 0.08 pc) and bright component, with a one sided jet detected out to about 10 mas. All model-fit components in the jet appear to be almost stationary during our observation period, and the spectral index is fairly flat in the core region and steepens along the jet's length. In particular, we present a preliminary study of the polarization properties for the 15 GHz dataset: we found a degree of polarization of ⼠1% for the core region and for the C3 component, at near 1 mas from the core, we found a value of near 14%. © Owned by the authors, published by EDP Sciences, 2013
    corecore