554 research outputs found

    The Physical Properties and Effective Temperature Scale of O-type Stars as a Function of Metallicity. III. More Results from the Magellanic Clouds

    Get PDF
    In order to better determine the physical properties of hot, massive stars as a function of metallicity, we obtained very high SNR optical spectra of 26 O and early B stars in the Magellanic Clouds. These allow accurate modeling even in cases where the He I 4471 line has an equivalent width of only a few tens of mA. The spectra were modeled with FASTWIND, with good fits obtained for 18 stars; the remainder show signatures of being binaries. We include stars in common to recent studies to investigate possible systematic differences. The "automatic" FASTWIND modeling method of Mokiem and collaborators produced temperatures 1100 K hotter on the average, presumably due to the different emphasis given to various temperature-sensitive lines. More significant, however, is that the automatic method always produced some "best" answer, even for stars we identify as composite (binaries). The temperatures found by the TLUSTY/CMFGEN modeling of Bouret, Heap, and collaborators yielded temperatures 1000 K cooler than ours, on average. Significant outliers were due either to real differences in the data (some of the Bouret/Heap data were contaminated by moonlight continua) or the fact we could detect the HeI line needed to better constrain the temperature. Our new data agrees well with the effective temperature scale we presented previously. We confirm that the "Of" emission-lines do not track luminosity classes in the exact same manner as in Milky Way stars. We revisit the the issue of the "mass discrepancy", finding that some of the stars in our sample do have spectroscopic masses that are significantly smaller than those derived from stellar evolutionary models. We do not find that the size of the mass discrepancy is simply related to either effective temperature or surface gravity.Comment: ApJ, in pres

    Kruiden voor kippen?

    Get PDF
    In de biologische pluimveesector worden regelmatig kruidenmiddelen gebruikt, en ook in de reguliere pluimveehouderij worden steeds meer producten op basis van kruiden toegepast. Wat zijn dat voor middelen en wat kan hiervan worden verwacht? Welk product te kiezen uit het ruime aanbod? In dit BioKennis bericht vindt u de actuele stand van zaken en nieuwe ontwikkelingen op dit gebie

    The IACOB project. V. Spectroscopic parameters of the O-type stars in the modern grid of standards for spectral classification

    Get PDF
    The IACOB and OWN surveys are two ambitious complementary observational projects which have made available a large multi-epoch spectroscopic database of optical high resolution spectra of Galactic massive O-type stars. As a first step in the study of the full sample of (more than 350) O stars surveyed by the IACOB/OWN projects, we have performed the quantitative spectroscopic analysis of a subsample of 128 stars included in the modern grid of O-type standards for spectral classification. We use semi-automatized tools to determine the set of spectroscopic parameters that can be obtained from the optical spectrum of O-type stars. We also benefit from the multi-epoch character of the surveys to perform a spectroscopic variability study of the sample, accounting for spectroscopic binarity and variability of the main wind diagnostic lines. We provide a general overview of the stellar and wind parameters of this reference sample, and updated recipes for the SpT\,--\,Teff/log g calibrations for Galactic O-type stars. We evaluate our semi-automatized analysis strategy with \sim40 stars from the literature, and find a good agreement. The agreement between the synthetic spectra associated with fastwind best fitting models and the observed spectra is good for most targets, but 46 stars present a particular behavior of the wind diagnostic lines that cannot be reproduced by our grid of spherically symmetric unclumped models. These are potential targets of interest for more detailed investigations of clumpy winds and/or the existence of additional circumstellar components. Last, our variability study has led to the detection of signatures of spectroscopic binarity in 27\% of the stars and small amplitude radial velocity variations in the photospheric lines of another 30\%. Additionally, 31\% of the investigated stars show variability in the wind diagnostic lines.Comment: 20 pages, 18 figures, accepted for publication in Astronomy & Astrophysic

    The Discordance of Mass-Loss Estimates for Galactic O-Type Stars

    Get PDF
    We have determined accurate values of the product of the mass-loss rate and the ion fraction of P^{4+}, Mdot q(P^{4+}), for a sample of 40 Galactic O-type stars by fitting stellar-wind profiles to observations of the P V resonance doublet obtained with FUSE, ORFEUS/BEFS, and Copernicus. When P^{4+} is the dominant ion in the wind, Mdot q(P^{4+}) approximates the mass-loss rate to within a factor of 2. Theory predicts that P^{4+} is the dominant ion in the winds of O7-O9.7 stars, though an empirical estimator suggests that the range from O4-O7 may be more appropriate. However, we find that the mass-loss rates obtained from P V wind profiles are systematically smaller than those obtained from fits to Halpha emission profiles or radio free-free emission by median factors of about 130 (if P^{4+} is dominant between O7 and O9.7) or about 20 (if P^{4+} is dominant between O4 and O7). These discordant measurements can be reconciled if the winds of O stars in the relevant temperature range are strongly clumped on small spatial scales. We use a simplified two-component model to investigate the volume filling factors of the denser regions. This clumping implies that mass-loss rates determined from "density squared" diagnostics have been systematically over-estimated by factors of 10 or more, at least for a subset of O stars. Reductions in the mass-loss rates of this size have important implications for the evolution of massive stars and quantitative estimates of the feedback that hot-star winds provide to their interstellar environments.Comment: 26 pages, 4 figures; accepted for publication in Ap

    STIS UV spectroscopy of early B supergiants in M31

    Get PDF
    We analyze STIS spectra in the 1150-1700 Angstrom wavelength range obtained for six early B supergiants in the neighboring galaxy M31. Because of their likely high (nearly solar) abundance, these stars were originally chosen to be directly comparable to their Galactic counterparts, and represent a much-needed addition to our current sample of B-type supergiants, in our efforts to study the dependence of the Wind Momentum-Luminosity Relationship on spectral type and metallicity. As a first step to determine wind momenta we fit the P-Cygni profiles of the resonance lines of N V, Si IV and C IV with standard methods, and derive terminal velocities for all of the STIS targets. From these lines we also derive ionic stellar wind column densities. Our results are compared with those obtained previously in Galactic supergiants, and confirm earlier claims of `normal' wind line intensities and terminal velocities in M31. For half of the sample we find evidence for an enhanced maximum turbulent velocity when compared to Galactic counterparts.Comment: 15 pages, 9 figures, 2 tables. Accepted for publication in The Astrophysical Journa

    Dynamics of Line-Driven Winds from Disks in Cataclysmic Variables. II. Mass Loss Rates and Velocity Laws

    Full text link
    We analyze the dynamics of 2D stationary line-driven winds from accretion disks in cataclysmic variables (CVs), by generalizing the Castor, Abbott and Klein theory. In paper 1, we have solved the wind Euler equation, derived its two eigenvalues, and addressed the solution topology and wind geometry. Here, we focus on mass loss and velocity laws. We find that disk winds, even in luminous novalike variables, have low optical depth, even in the strongest driving lines. This suggests that thick-to-thin transitions in these lines occur. For disks with a realistic radial temperature, the mass loss is dominated by gas emanating from the inner decade in r. The total mass loss rate associated with a luminosity 10 Lsun is 10^{-12} Msun/yr, or 10^{-4} of the mass accretion rate. This is one order of magnitude below the lower limit obtained from P Cygni lines, when the ionizing flux shortwards of the Lyman edge is supressed. The difficulties with such small mass loss rates in CVs are principal, and confirm our previous work. We conjecture that this issue may be resolved by detailed nonLTE calculations of the line force within the context of CV disk winds, and/or better accounting for the disk energy distribution and wind ionization structure. We find that the wind velocity profile is well approximated by the empirical law used in kinematical modeling. The acceleration length scale is given by the footpoint radius of the wind streamline in the disk. This suggests an upper limit of 10 Rwd to the acceleration scale, which is smaller by factors of a few as compared to values derived from line fitting.Comment: 14 pages, 3 Postscript figures, also from http://www.pa.uky.edu/~shlosman/publ.html. Astrophysical Journal, submitte

    Broad Line Emission in Low-Metallicity Blue Compact Dwarf Galaxies: Evidence for Stellar Wind, Supernova and Possible AGN Activity

    Full text link
    We present spectra of a large sample of low-metallicity blue compact dwarf galaxies which exhibit broad components in their strong emission lines, mainly in Hbeta, [O III]4959, 5007 and Halpha. Twenty-three spectra have been obtained with the MMT, 14 of which show broad emission. The remaining 21 spectra with broad emission have been selected from the Data Release 5 of the Sloan Digital Sky Survey. The most plausible origin of broad line emission is the evolution of massive stars and their interaction with the circumstellar and interstellar medium. The broad emission with the lowest Hα\alpha luminosities (10^36 - 10^39 erg/s) is likely produced in circumstellar envelopes around hot Ofp/WN9 and/or LBV stars. The broad emission with the highest Halpha luminosities (10^40 - 10^42 erg/s) probably arises from type IIp or type IIn supernovae (SNe). It can also come from active galactic nuclei (AGN) containing intermediate-mass black holes, although we find no strong evidence for hard non-thermal radiation in our sample galaxies. The oxygen abundance in the host galaxies with SN candidates is low and varies in the range 12 + log O/H = 7.36 - 8.31. However, type IIn SN / AGN candidates are found only in galaxies with 12 + log O/H < 7.99. Spectroscopic monitoring of these type IIn SN / AGN candidates over a time scale of several years is necessary to distinguish between the two possibilities.Comment: 50 pages, 6 figures. Accepted for publication in the Astrophysical Journa

    NLTE analysis of spectra: OBA stars

    Full text link
    Methods of calculation of NLTE model atmosphere are discussed. The NLTE trace element procedure is compared with the full NLTE model atmosphere calculation. Differences between LTE and NLTE atmosphere modeling are evaluated. The ways of model atom construction are discussed. Finally, modelling of expanding atmospheres of hot stars with winds is briefly reviewed.Comment: in Determination of Atmospheric Parameters of B-, A-, F- and G-Type Stars, E. Niemczura et al. eds., Springer, in pres

    Towards an understanding of the Of?p star HD 191612: optical spectroscopy

    Full text link
    We present extensive optical spectroscopy of the early-type magnetic star HD 191612 (O6.5f?pe-O8fp). The Balmer and HeI lines show strongly variable emission which is highly reproducible on a well-determined 538-d period. Metal lines and HeII absorptions (including many selective emission lines but excluding He II 4686A emission) are essentially constant in line strength, but are variable in velocity, establishing a double-lined binary orbit with P(orb) = 1542d, e=0.45. We conduct a model-atmosphere analysis of the primary, and find that the system is consistent with a O8: giant with a B1: main-sequence secondary. Since the periodic 538-d changes are unrelated to orbital motion, rotational modulation of a magnetically constrained plasma is strongly favoured as the most likely underlying `clock'. An upper limit on the equatorial rotation is consistent with this hypothesis, but is too weak to provide a strong constraint.Comment: Accepted for MNRA

    Runaway Massive Binaries and Cluster Ejection Scenarios

    Get PDF
    The production of runaway massive binaries offers key insights into the evolution of close binary stars and open clusters. The stars HD 14633 and HD 15137 are rare examples of such runaway systems, and in this work we investigate the mechanism by which they were ejected from their parent open cluster, NGC 654. We discuss observational characteristics that can be used to distinguish supernova ejected systems from those ejected by dynamical interactions, and we present the results of a new radio pulsar search of these systems as well as estimates of their predicted X-ray flux assuming that each binary contains a compact object. Since neither pulsars nor X-ray emission are observed in these systems, we cannot conclude that these binaries contain compact companions. We also consider whether they may have been ejected by dynamical interactions in the dense environment where they formed, and our simulations of four-body interactions suggest that a dynamical origin is possible but unlikely. We recommend further X-ray observations that will conclusively identify whether HD 14633 or HD 15137 contain neutron stars.Comment: Accepted to ApJ, 11 page
    corecore