773 research outputs found
Recommendations for increasing research on co-occurring serious mental illness and gambling problems : Commentary on: Disordered gambling and psychosis: Prevalence and clinical correlates (Cassetta et al., 2018)
Psychiatric disorders frequently co-occur with gambling disorder. Although community and clinical samples show frequent co-occurrence between gambling and psychotic disorders, relatively little research has been conducted on this population. Here, we comment on a recent study conducted in Brazil on the clinical correlates of psychotic disorders in treatment-seeking individuals with gambling disorder, relate the findings to those from the northeastern region of the United States, and discuss implications with respect to promoting responsible gambling in the setting of the expansion of legalized gambling
DNA Nucleobase Synthesis at Titan Atmosphere Analog by Soft X-rays
Titan, the largest satellite of Saturn, has an atmosphere chiefly made up of
N2 and CH4 and includes traces of many simple organic compounds. This
atmosphere also partly consists of haze and aerosol particles which during the
last 4.5 gigayears have been processed by electric discharges, ions, and
ionizing photons, being slowly deposited over the Titan surface. In this work,
we investigate the possible effects produced by soft X-rays (and secondary
electrons) on Titan aerosol analogs in an attempt to simulate some prebiotic
photochemistry. The experiments have been performed inside a high vacuum
chamber coupled to the soft X-ray spectroscopy beamline at the Brazilian
Synchrotron Light Source, Campinas, Brazil. In-situ sample analyses were
performed by a Fourier transform infrared spectrometer. The infrared spectra
have presented several organic molecules, including nitriles and aromatic CN
compounds. After the irradiation, the brownish-orange organic residue (tholin)
was analyzed ex-situ by gas chromatographic (GC/MS) and nuclear magnetic
resonance (1H NMR) techniques, revealing the presence of adenine (C5H5N5), one
of the constituents of the DNA molecule. This confirms previous results which
showed that the organic chemistry on the Titan surface can be very complex and
extremely rich in prebiotic compounds. Molecules like these on the early Earth
have found a place to allow life (as we know) to flourish.Comment: To appear in Journal of Physical Chemistry A.; Number of pages: 6;
Number of Figures: 5; Number of Tables: 1; Number of references:49; Full
paper at http://pubs.acs.org/doi/abs/10.1021/jp902824
Mechanisms, models and biomarkers in amyotrophic lateral sclerosis
The last 30 years have seen a major advance in the understanding of the clinical and pathological heterogeneity of amyotrophic lateral sclerosis (ALS), and its overlap with frontotemporal dementia. Multiple, seemingly disparate biochemical pathways converge on a common clinical syndrome characterized by progressive loss of upper and lower motor neurons. Pathogenic themes in ALS include excitotoxicity, oxidative stress, mitochondrial dysfunction, neuroinflammation, altered energy metabolism, and most recently RNA mis-processing. The transgenic rodent, overexpressing mutant superoxide dismutase-1, is now only one of several models of ALS pathogenesis. The nematode, fruit fly and zebrafish all offer fresh insight, and the development of induced pluripotent stem cell-derived motor neurons holds promise for the screening of candidate therapeutics. The lack of useful biomarkers in ALS contributes to diagnostic delay, and the inability to stratify patients by prognosis may be an important factor in the failure of therapeutic trials. Biomarkers sensitive to disease activity might lessen reliance on clinical measures and survival as trial endpoints and reduce study length. Emerging proteomic markers of neuronal loss and glial activity in cerebrospinal fluid, a cortical signature derived from advanced structural and functional MRI, and the development of more sensitive measurements of lower motor neuron physiology are leading a new phase of biomarker-driven therapeutic discovery
Parkinson's disease biomarkers: perspective from the NINDS Parkinson's Disease Biomarkers Program
Biomarkers for Parkinson's disease (PD) diagnosis, prognostication and clinical trial cohort selection are an urgent need. While many promising markers have been discovered through the National Institute of Neurological Disorders and Stroke Parkinson's Disease Biomarker Program (PDBP) and other mechanisms, no single PD marker or set of markers are ready for clinical use. Here we discuss the current state of biomarker discovery for platforms relevant to PDBP. We discuss the role of the PDBP in PD biomarker identification and present guidelines to facilitate their development. These guidelines include: harmonizing procedures for biofluid acquisition and clinical assessments, replication of the most promising biomarkers, support and encouragement of publications that report negative findings, longitudinal follow-up of current cohorts including the PDBP, testing of wearable technologies to capture readouts between study visits and development of recently diagnosed (de novo) cohorts to foster identification of the earliest markers of disease onset
The sphere-in-contact model of carbon materials
A sphere-in-contact model is presented that is used to build physical models of carbon materials such as graphite, graphene, carbon nanotubes and fullerene. Unlike other molecular models, these models have correct scale and proportions because the carbon atoms are represented by their atomic radius, in contrast to the more commonly used space-fill models, where carbon atoms are represented by their van der Waals radii. Based on a survey taken among 65 undergraduate chemistry students and 28 PhD/postdoctoral students with a background in molecular modeling, we found misconceptions arising from incorrect visualization of the size and location of the electron density located in carbon materials. Based on analysis of the survey and on a conceptual basis we show that the sphere-in-contact model provides an improved molecular representation of the electron density of carbon materials compared to other molecular models commonly used in science textbooks (i.e., wire-frame, ball-and-stick, space-fill). We therefore suggest that its use in chemistry textbooks along with the ball-and-stick model would significantly enhance the visualization of molecular structures according to their electron density
Pregnancy in multiple system atrophy: a case report
<p>Abstract</p> <p>Introduction</p> <p>Multiple system atrophy is a late, adult-onset α-synucleinopathy with no data on the effect of pregnancy on the disease course. Early stage multiple system atrophy can be difficult to distinguish from Parkinson's disease.</p> <p>Case presentation</p> <p>We describe the case of an Irish woman with parkinsonism starting at age 31, initially diagnosed as having dopa-responsive, idiopathic Parkinson's disease, who successfully delivered a full-term child at age 35. Her pregnancy was complicated by severe orthostatic hypotension and motor fluctuations. Two years post-partum, she underwent bilateral subthalamic nuclei deep brain stimulation for intractable motor fluctuations and disabling dyskinesia. After this treatment course she experienced deterioration of motor symptoms and death eight years after disease onset. Post-mortem neuropathological examination revealed striatonigral degeneration and α-synuclein-positive glial cytoplasmic inclusions in brain stem nuclei, basal ganglia and white matter tracts, consistent with a neuropathological diagnosis of multiple system atrophy.</p> <p>Conclusions</p> <p>Multiple system atrophy can affect women of child-bearing age and pregnancy may be associated with marked disease progression.</p
GBA mutations are associated with Rapid eye movement sleep behavior disorder
Rapid eye movement sleep behavior disorder and GBA mutations are both
associated with Parkinson’s disease. The GBA gene was sequenced in idiopathic
rapid eye movement sleep behavior disorder patients (n = 265), and compared
to controls (n = 2240). Rapid eye movement sleep behavior disorder questionnaire was performed in an independent Parkinson’s disease cohort (n = 120).
GBA mutations carriers had an OR of 6.24 (10.2% in patients vs. 1.8% in controls, P < 0.0001) for rapid eye movement sleep behavior disorder, and among
Parkinson’s disease patients, the OR for mutation carriers to have probable
rapid eye movement sleep behavior disorder was 3.13 (P = 0.039). These results
demonstrate that rapid eye movement sleep behavior disorder is associated with
GBA mutations, and that combining genetic and prodromal data may assist in
identifying individuals susceptible to Parkinson’s disease
Cancer outcomes among Parkinson's disease patients with leucine rich repeat kinase 2 mutations, idiopathic Parkinson's disease patients, and nonaffected controls
BACKGROUND:
Increased cancer risk has been reported in Parkinson's disease (PD) patients carrying the leucine rich repeat kinase 2 (LRRK2) G2019S mutation (LRRK2-PD) in comparison with idiopathic PD (IPD). It is unclear whether the elevated risk would be maintained when compared with unaffected controls.
METHODS:
Cancer outcomes were compared among 257 LRRK2-PD patients, 712 IPD patients, and 218 controls recruited from 7 LRRK2 consortium centers using mixed-effects logistic regression. Data were then pooled with a previous study to examine cancer risk between 401 LRRK2-PD and 1946 IPD patients.
RESULTS:
Although cancer prevalence was similar among LRRK2-PD patients (32.3%), IPD patients (27.5%), and controls (27.5%; P = 0.33), LRRK2-PD had increased risks of leukemia (odds ratio [OR] = 4.55; 95% confidence interval [CI], 1.46-10.61) and skin cancer (OR = 1.61; 95% CI, 1.09-2.37). In the pooled analysis, LRRK2-PD patients had also elevated risks of leukemia (OR = 9.84; 95% CI, 2.15-44.94) and colon cancer (OR = 2.34; 95% CI, 1.15-4.74) when compared with IPD patients.
CONCLUSIONS:
The increased risks of leukemia as well as skin and colon cancers among LRRK2-PD patients suggest that LRRK2 mutations heighten risks of certain cancers. © 2019 International Parkinson and Movement Disorder Society
Genetic Testing in Parkinson's Disease
Genetic testing for persons with Parkinson's disease is becoming increasingly common. Significant gains have been made regarding genetic testing methods, and testing is becoming more readily available in clinical, research, and direct-to-consumer settings. Although the potential utility of clinical testing is expanding, there are currently no proven gene-targeted therapies, but clinical trials are underway. Furthermore, genetic testing practices vary widely, as do knowledge and attitudes of relevant stakeholders. The specter of testing mandates financial, ethical, and physician engagement, and there is a need for guidelines to help navigate the myriad of challenges. However, to develop guidelines, gaps and controversies need to be clearly identified and analyzed. To this end, we first reviewed recent literature and subsequently identified gaps and controversies, some of which were partially addressed in the literature, but many of which are not well delineated or researched. Key gaps and controversies include: (1) Is genetic testing appropriate in symptomatic and asymptomatic individuals without medical actionability? (2) How, if at all, should testing vary based on ethnicity? (3) What are the long-term outcomes of consumer- and research-based genetic testing in presymptomatic PD? (4) What resources are needed for clinical genetic testing, and how is this impacted by models of care and cost-benefit considerations? Addressing these issues will help facilitate the development of consensus and guidelines regarding the approach and access to genetic testing and counseling. This is also needed to guide a multidisciplinary approach that accounts for cultural, geographic, and socioeconomic factors in developing testing guidelines.</p
- …