15 research outputs found

    Restricted gene flow at the micro- and macro-geographical scale in marble trout based on mtDNA and microsatellite polymorphism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genetic structure of the marble trout <it>Salmo trutta marmoratus</it>, an endemic salmonid of northern Italy and the Balkan peninsula, was explored at the macro- and micro-scale level using a combination of mitochondrial DNA (mtDNA) and microsatellite data.</p> <p>Results</p> <p>Sequence variation in the mitochondrial control region showed the presence of nonindigenous haplotypes indicative of introgression from brown trout into marble trout. This was confirmed using microsatellite markers, which showed a higher introgression at nuclear level. Microsatellite loci revealed a strong genetic differentiation across the geographical range of marble trout, which suggests restricted gene flow both at the micro-geographic (within rivers) and macro-geographic (among river systems) scale. A pattern of Isolation-by-Distance was found, in which genetic samples were correlated with hydrographic distances. A general West-to-East partition of the microsatellite polymorphism was observed, which was supported by the geographic distribution of mitochondrial haplotypes.</p> <p>Conclusion</p> <p>While introgression at both mitochondrial and nuclear level is unlikely to result from natural migration and might be the consequence of current restocking practices, the pattern of genetic substructuring found at microsatellites has been likely shaped by historical colonization patterns determined by the geological evolution of the hydrographic networks.</p

    Properties and local environment of p-type dopants and photoluminescent rare-earths implanted into zon single-crystals

    Get PDF
    Tese de doutoramento em Física, apresentada à Universidade de Lisboa através da Faculdade de Ciências, 2008This thesis presents an experimental study of the local environment of P-type and Rare-Earth dopants implanted in ZnO single-crystals (SCs). Various nuclear and bulk property techniques were combined in the following evaluations: Implantation damage annealing Implantation damage annealing was evaluated in ZnO SCs implanted with Fe, Sr and Ca. P-type dopants Cu and Ag implanted ZnO SCs were studied revealing that the solubility of Cu in substituting Zn is considerably higher than that of Ag. These results are discussed within the scope of the ZnO p-type doping problematic with these elements. Experimental proofs of the As anti-site behavior in ZnO were for the first time attained, i.e., the majority of As atoms are substitutional at the Zn site (SZn), possibly surrounded by two Zn vacancies (VZn). This reinforces the theoretical prediction that As acts as an acceptor in ZnO via the AsZn-2VZn complex formation. The co-doping of ZnO SC with In (donor) and As (acceptor) was addressed. The most striking result is the possible In-As pair formation. Two configurations are proposed for this pair , both with In and As at SZn. A purely In-related defect is also identified. These are preliminary experiments that can serve as guidelines for future and deeper studies. Rare-earths (RE) RE lattice site location, RE surface segregation and optical activation were investigated in Er and Tm implanted ZnO SCs, as a function of annealing temperature, implantation doses and implantation conditions. RE surface segregation and lattice recovery occur for high annealing temperatures, being more pronounced in the low dose implanted crystals. The RE-O clusters formation is suggested for the higher dose implanted samples. Er and Tm optical activation occurs at different annealing temperatures depending on the implantation doses, suggesting that the RE-related emission is associated with defects/impurities in the RE close vicinity that change with the annealings

    Fishery-Induced Selection for Slow Somatic Growth in European Eel

    Get PDF
    Both theoretical and experimental studies have shown that fishing mortality can induce adaptive responses in body growth rates of fishes in the opposite direction of natural selection. We compared body growth rates in European eel (Anguilla anguilla) from three Mediterranean stocks subject to different fishing pressure. Results are consistent with the hypotheses that i) fast-growing individuals are more likely to survive until sexual maturity than slow-growing ones under natural conditions (no fishing) and ii) fishing can select for slow-growing individuals by removing fast-growing ones. Although the possibility of human-induced evolution seems remote for a panmictic species like such as the European eel, further research is desirable to assess the implications of the intensive exploitation on this critically endangered fish

    The Effect of Recurrent Floods on Genetic Composition of Marble Trout Populations

    Get PDF
    A changing global climate can threaten the diversity of species and ecosystems. We explore the consequences of catastrophic disturbances in determining the evolutionary and demographic histories of secluded marble trout populations in Slovenian streams subjected to weather extremes, in particular recurrent flash floods and debris flows causing massive mortalities. Using microsatellite data, a pattern of extreme genetic differentiation was found among populations (global FST of 0.716), which exceeds the highest values reported in freshwater fish. All locations showed low levels of genetic diversity as evidenced by low heterozygosities and a mean of only 2 alleles per locus, with few or no rare alleles. Many loci showed a discontinuous allele distribution, with missing alleles across the allele size range, suggestive of a population contraction. Accordingly, bottleneck episodes were inferred for all samples with a reduction in population size of 3–4 orders of magnitude. The reduced level of genetic diversity observed in all populations implies a strong impact of genetic drift, and suggests that along with limited gene flow, genetic differentiation might have been exacerbated by recurrent mortalities likely caused by flash flood and debris flows. Due to its low evolutionary potential the species might fail to cope with an intensification and altered frequency of flash flood events predicted to occur with climate change

    Data from: Assessing pre- and post-zygotic barriers between North Atlantic eels (Anguilla anguilla and A. rostrata)

    No full text
    Elucidating barriers to gene flow is important for understanding the dynamics of speciation. Here we investigate pre- and post-zygotic mechanisms acting between the two hybridizing species of Atlantic eels: Anguilla anguilla and A. rostrata. Temporally varying hybridization was examined by analyzing 85 species-diagnostic single-nucleotide polymorphisms (SNPs; FST greater than or equal to0.95) in eel larvae sampled in the spawning region in the Sargasso Sea in 2007 (N=92) and 2014 (N=460). We further investigated whether genotypes at these SNPs were nonrandomly distributed in post-F1 hybrids, indicating selection. Finally, we sequenced the mitochondrial ATP6 and nuclear ATP5c1 genes in 19 hybrids, identified using SNP and restriction site associated DNA (RAD) sequencing data, to test a previously proposed hypothesis of cytonuclear incompatibility leading to adenosine triphosphate (ATP) synthase dysfunction and selection against hybrids. No F1 hybrids but only later backcrosses were observed in the Sargasso Sea in 2007 and 2014. This suggests that interbreeding between the two species only occurs in some years, possibly controlled by environmental conditions at the spawning grounds, or that interbreeding has diminished through time as a result of a declining number of spawners. Moreover, potential selection was found at the nuclear and the cytonuclear levels. Nonetheless, one glass eel individual showed a mismatch, involving an American ATP6 haplotype and European ATP5c1 alleles. This contradicted the presence of cytonuclear incompatibility but may be explained by that (1) cytonuclear incompatibility is incomplete, (2) selection acts at a later life stage or (3) other genes are important for protein function. In total, the study demonstrates the utility of genomic data when examining pre- and post-zyotic barriers in natural hybrids

    Genome-wide methylation in the panmictic European eel (Anguilla anguilla)

    No full text
    The role of methylation in adaptive, developmental and speciation processes has attracted considerable interest, but interpretation of results is complicated by diffuse boundaries between genetic and non-genetic variation. We studied whole genome genetic and methylation variation in the European eel, distributed from subarctic to subtropical environments, but with panmixia precluding genetically based local adaptation beyond single-generation responses. Overall methylation was 70.9%, with hypomethylation predominantly found in promoters and first exons. Redundancy analyses involving juvenile glass eels showed 0.06% and 0.03% of the variance at SNPs to be explained by localities and environmental variables, respectively, with GO terms of genes associated with outliers primarily involving neural system functioning. For CpGs 2.98% and 1.36% of variance was explained by localities and environmental variables. Differentially methylated regions particularly included genes involved in developmental processes, with Hox clusters featuring prominently. Life stage (adult versus glass eels) was the most important source of inter-individual variation in methylation, probably reflecting both ageing and developmental processes. Demethylation of transposable elements relative to pure European eel was observed in European X American eel hybrids, possibly representing postzygotic barriers in this system characterized by prolonged speciation and ongoing gene flow. Whereas the genetic data are consistent with a role of single-generation selective responses, the methylation results underpin the importance of epigenetics in the life cycle of eels and suggest interactions between local environments, development and phenotypic variation mediated by methylation variation. Eels are remarkable by having retained eight Hox clusters, and the results suggest important roles of methylation at Hox genes for adaptive processes.This study was funded by the Danish Council for Independent Research, Natural Science (grant no. 7014-00167B to MMH) and MarGen II, an Interreg Project Under the Øresund-Kattegat-Skagerrak Programme.Peer reviewe

    FLUIDIGM SNP data in genepop format

    No full text
    FLUIDIGM SNP data in genepop format from all genotyped individuals analyzed in the present study. The data includes both data from the paper of pujolar et al. 2014a and new data
    corecore