102 research outputs found

    BCL3-rearrangements in B-cell lymphoid neoplasms occur in two breakpoint clusters associated with different diseases

    Get PDF
    The t(14;19)(q32;q13) often juxtaposes BCL3 with IGH resulting in overexpression of the gene. In contrast to other oncogenic translocations, BCL3-rearrangement (BCL3-R) has been associated with a broad spectrum of lymphoid neoplasms. Here we report an integrative whole-genome sequence, transcriptomic, and DNA methylation analysis of 13 lymphoid neoplasms with BCL3-R. The resolution of the breakpoints at single base-pair revealed that they occur in two clusters at 5' (n=9) and 3' (n=4) regions of BCL3 associated with two different biological and clinical entities. Both breakpoints were mediated by aberrant class switch recombination of the IGH locus. However, the 5' breakpoints (upstream) juxtaposed BCL3 next to an IGH enhancer leading to overexpression of the gene whereas the 3' breakpoints (downstream) positioned BCL3 outside the influence of the IGH and were not associated with its expression. Upstream BCL3-R tumors had unmutated IGHV, trisomy 12, and mutated genes frequently seen in CLL but had an atypical CLL morphology, immunophenotype, DNA methylome, and expression profile that differ from conventional CLL. In contrast, downstream BCL3-R neoplasms were atypical splenic or nodal marginal zone lymphomas (MZL) with mutated IGHV, complex karyotypes and mutated genes typical of MZL. Two of the latter 4 tumors transformed to a large B-cell lymphoma. We designed a novel FISH assay that recognizes the two different breakpoints and validated these findings in 17 independent tumors. Overall, upstream or downstream breakpoints of BCL3-R are mainly associated with two subtypes of lymphoid neoplasms with different (epi)genomic, expression, and clinicopathological features resembling atypical CLL and MZL, respectively

    BCL3-rearrangements in B-cell lymphoid neoplasms occur in two breakpoint clusters associated with different diseases

    Full text link
    The t(14;19)(q32;q13) often juxtaposes BCL3 with immunoglobulin heavy chain (IGH) resulting in overexpression of the gene. In contrast to other oncogenic translocations, BCL3 rearrangement (BCL3-R) has been associated with a broad spectrum of lymphoid neoplasms. Here we report an integrative whole-genome sequence, transcriptomic, and DNA methylation analysis of 13 lymphoid neoplasms with BCL3-R. The resolution of the breakpoints at single base-pair revealed that they occur in two clusters at 5' (n=9) and 3' (n=4) regions of BCL3 associated with two different biological and clinical entities. Both breakpoints were mediated by aberrant class switch recombination of the IGH locus. However, the 5' breakpoints (upstream) juxtaposed BCL3 next to an IGH enhancer leading to overexpression of the gene whereas the 3' breakpoints (downstream) positioned BCL3 outside the influence of the IGH and were not associated with its expression. Upstream BCL3-R tumors had unmutated IGHV, trisomy 12, and mutated genes frequently seen in chronic lymphocytic leukemia (CLL) but had an atypical CLL morphology, immunophenotype, DNA methylome, and expression profile that differ from conventional CLL. In contrast, downstream BCL3-R neoplasms were atypical splenic or nodal marginal zone lymphomas (MZL) with mutated IGHV, complex karyotypes and mutated genes typical of MZL. Two of the latter four tumors transformed to a large B-cell lymphoma. We designed a novel fluorescence in situ hybridization assay that recognizes the two different breakpoints and validated these findings in 17 independent tumors. Overall, upstream or downstream breakpoints of BCL3-R are mainly associated with two subtypes of lymphoid neoplasms with different (epi)genomic, expression, and clinicopathological features resembling atypical CLL and MZL, respectively

    Cytogenetic complexity in chronic lymphocytic leukemia: definitions, associations and clinical impact

    Get PDF
    Recent evidence suggests that complex karyotype (CK) defined by the presence of 653 chromosomal aberrations (structural and/or numerical) identified by chromosome banding analysis (CBA) may be relevant for treatment decision-making in chronic lymphocytic leukemia (CLL). However, many challenges towards routine clinical application of CBA remain. In a retrospective study of 5290 patients with available CBA data, we explored both clinicobiological associations and the clinical impact of CK in CLL. We found that patients with 655 abnormalities, defined as high-CK, exhibit uniformly dismal clinical outcome, independently of clinical stage, TP53 aberrations (deletion of chromosome 17p and or TP53 mutations, TP53abs) and the expression of somatically hypermutated (M-CLL) or unmutated (U-CLL) immunoglobulin heavy variable genes (IGHV). Thus, they contrasted CK cases with 3 or 4 aberrations (low-CK and intermediate-CK, respectively) who followed aggressive disease courses only in the presence of TP53abs. At the other end of the spectrum, patients with CK and +12,+19 displayed an exceptionally indolent profile. Building upon CK, TP53abs and IGHV gene somatic hypermutation status, we propose a novel hierarchical model where patients with high-CK exhibit the worst prognosis, while M-CLL lacking CK or TP53abs as well as CK with +12,+19 show the longest overall survival. In conclusion, CK should not be axiomatically considered unfavorable in CLL, representing a heterogeneous group with variable clinical behavior. High-CK with 655 chromosomal aberrations emerges as prognostically adverse, independently of other biomarkers. Prospective clinical validation is warranted before finally incorporating high-CK in risk stratification of CLL

    Re-analysis of public genetic data reveals a rare X-chromosomal variant associated with type 2 diabetes.

    Get PDF
    The reanalysis of existing GWAS data represents a powerful and cost-effective opportunity to gain insights into the genetics of complex diseases. By reanalyzing publicly available type 2 diabetes (T2D) genome-wide association studies (GWAS) data for 70,127 subjects, we identify seven novel associated regions, five driven by common variants (LYPLAL1, NEUROG3, CAMKK2, ABO, and GIP genes), one by a low-frequency (EHMT2), and one driven by a rare variant in chromosome Xq23, rs146662057, associated with a twofold increased risk for T2D in males. rs146662057 is located within an active enhancer associated with the expression of Angiotensin II Receptor type 2 gene (AGTR2), a modulator of insulin sensitivity, and exhibits allelic specific activity in muscle cells. Beyond providing insights into the genetics and pathophysiology of T2D, these results also underscore the value of reanalyzing publicly available data using novel genetic resources and analytical approaches

    Identification of gene mutations and fusion genes in patients with Sézary Syndrome

    Full text link
    Sézary syndrome is a leukemic form of cutaneous T-cell lymphoma with an aggressive clinical course. The genetic etiology of the disease is poorly understood, with chromosomal abnormalities and mutations in some genes being involved in the disease. The goal of our study was to understand the genetic basis of the disease by looking for driver gene mutations and fusion genes in 15 erythrodermic patients with circulating Sézary cells, 14 of them fulfilling the diagnostic criteria of Sézary syndrome. We have discovered genes that could be involved in the pathogenesis of Sézary syndrome. Some of the genes that are affected by somatic point mutations include ITPR1, ITPR2, DSC1, RIPK2, IL6, and RAG2, with some of them mutated in more than one patient. We observed several somatic copy number variations shared between patients, including deletions and duplications of large segments of chromosome 17. Genes with potential function in the T-cell receptor signaling pathway and tumorigenesis were disrupted in Sézary syndrome patients, for example, CBLB, RASA2, BCL7C, RAMP3, TBRG4, and DAD1. Furthermore, we discovered several fusion events of interest involving RASA2, NFKB2, BCR, FASN, ZEB1, TYK2, and SGMS1. Our work has implications for the development of potential therapeutic approaches for this aggressive disease

    Publisher correction: Re-analysis of public genetic data reveals a rare X-chromosomal variant associated with type 2 diabetes (vol 9, 321, 2018)

    Get PDF
    Correction to: Nature Communications https://doi.org/10.1038/s41467-017-02380-9 , published online 22 January 2018 In the originally published version of this Article, the af fi liation details for Santi González, Jian ’ an Luan and Claudia Langenberg were inadvertently omitted. Santi González should have been af fi liated with 'Barcelona Supercomputing Center (BSC), Joint BSC-CRG-IRB Research Program in Computational Biology, 08034 Barcelona, Spain ’ , and Jian ’ an Luan and Claudia Langenberg should have been af fi liated with ‘ MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK ’ . Furthermore, the abstract contained an error in the SNP ID for the rare variant in chromosome Xq23, which was incorrectly given as rs146662057 and should have been rs146662075. These errors have now been corrected in both the PDF and HTML versions of the Article

    Chromosome banding analysis and genomic microarrays are both useful but not equivalent methods for genomic complexity risk stratification in chronic lymphocytic leukemia patients

    Get PDF
    Genome complexity has been associated with poor outcome in patients with chronic lymphocytic leukemia (CLL). Previous cooperative studies established five abnormalities as the cut-off that best predicts an adverse evolution by chromosome banding analysis (CBA) and genomic microarrays (GM). However, data comparing risk stratification by both methods are scarce. Herein, we assessed a cohort of 340 untreated CLL patients highly enriched in cases with complex karyotype (CK) (46.5%) with parallel CBA and GM studies. Abnormalities found by both techniques were compared. Prognostic stratification in three risk groups based on genomic complexity (0-2, 3- 4 and ¿5 abnormalities) was also analyzed. No significant differences in the percentage of patients in each group were detected, but only a moderate agreement was observed between methods when focusing on individual cases (kappa=0.507; P<0.001). Discordant classification was obtained in 100 patients (29.4%), including 3% classified in opposite risk groups. Most discrepancies were technique-dependent and no greater correlation in the number of abnormalities was achieved when different filtering strategies were applied for GM. Nonetheless, both methods showed a similar concordance index for prediction of time to first treatment (TTFT) (CBA: 0.67 vs. GM: 0.65) and overall survival (CBA: 0.55 vs. GM: 0.57)
    • …
    corecore