700 research outputs found

    Regionalised impacts of climate change on flood flows: regionalising the flood response types in Britain. Milestone report 4. Revised November 2009

    Get PDF
    The primary objective of this project is to assess the suitability of current FCDPAG3 guidance given the advances in climate change science since its publication. PAG3 requires an allowance of 20% to be added to peak flows for any period between 2025 and 2115 for any location across Britain. This guidance was considered a precautionary value and its derivation reflected the evidence available at that time. FD2020 has been designed to increase this evidence base, and it is anticipated that the research will lead to the development of regional, rather than national, guidelines for changes to peak flows due to climate change. A scenario-neutral approach based on a broad sensitivity analysis to determine catchment response to changes in climate as chosen for FD2020. The method separates the climate change that a catchment may be exposed to (the hazard) from the catchment response (change in peak flows) to changes in the climate (the vulnerability). By combining current understanding of climate change likelihood (the ‘hazard’) with the vulnerability of a given catchment, it is possible to evaluate the risk of flood flow changes. The vulnerability of a catchment is to be characterised in two steps: first, the response of a set of catchments to a range of climatic changes are modelled, then analysed for similarity, and second the main responses are characterised according to catchment properties. This is possible by defining a sensitivity framework of changes to the mean and seasonality of precipitation and temperature and modelling the response of each catchment within this fixed framework. This milestone report describes the second step of the vulnerability assessment. This is achieved by identifying the relationships identified between a catchment’s characteristics (geographic, geologic or climatic) and the vulnerability of its flood peak to changes in the climate. The work follows the identification of nine flood response types for catchments in Britain, after a comprehensive ‘scenario-neutral’ sensitivity study based on 4,200 patterns of changes in rainfall, temperature and potential evaporation. These nine flood response types were found to fully describe the range of changes in flood peak obtained in 154 catchments, and represent five main families of behaviour from the most ‘damping’ (low vulnerability), through ‘neutral’, to the most ‘enhancing’ (high vulnerability) catchments. One of the response types, with a very damped response to changes in climate, was removed from the analysis, as the group was too small for a reliable model to be built; leaving eight flood response types to characterise. Using a hierarchical partitioning technique and digital catchment descriptors from the Flood Estimation Handbook and the Hydrometric Register databases, decision trees were identified to discriminate the flood response type from nine descriptors including mean annual rainfall, area, northing and easting, elevation, and measures of permeability and catchment losses. At the 2-year return period level, all eight flood response types could be discriminated. For changes in the 20- and 50-year return period floods, the flood response types had to be merged into four main categories before they could be discriminated by the catchment characteristics. This merging was also necessary to ensure that uncertainty due to the impact of seasonality in rainfall change was fully incorporated into the flood response types. For the most enhancing catchments (i.e. where the changes in flood peak are proportionally much greater than the maximum increases in rainfall), the difference between the mean annual rainfall and the losses in the catchment was found to be an important discriminatory factor. For changes in higher return period floods, mean annual rainfall was found to be less critical. Wetter catchments were found to be in general less enhancing than drier catchments. The decision trees were successful for between 67.5% and 84% of the study catchments, depending on the flood indicator. Amongst the misclassified catchments, a larger proportion was misclassified as more enhancing, resulting in a potential over-estimation of changes in flood peaks, or an over-precautionary assessment. When evaluating the ability to discriminate between the more general families of ‘resilient/damping catchments’ (i.e. associated with a damped flood response type), ‘neutral catchments’ and ‘vulnerable/enhancing catchments’ (i.e. associated with an enhanced response type), 80% of the catchments were found to be correctly classified across all four flood indicators. Large catchments seem to be slightly more difficult to classify, suggesting they might not be well represented by single value descriptors which smooth out spatial variations important in the response of the river to climatic changes. Following the decision trees (sets of partitioning rules and paths for each of the flood response types), it is possible to quickly identify, for any catchment (gauged or ungauged but with available descriptors), the expected flood response type in response to climate change. This regionalised vulnerability assessment can be used in combination with an evaluation of potential climatic changes (or the hazard) to provide a measure of the risk of changes in flood peaks. In particular, this framework will enable a quick update of the potential risk of changes in peak floods when new climate change projections become available, such as for example the UKCP09 scenarios, without the need to undertake an extensive hydrological modelling and impact study

    Understanding the performance of water supply systems during mild to extreme droughts

    Get PDF
    This project assessed the performance of different types of public water supply systems in England and Wales in a range of droughts, including those that are more severe than the worst droughts in the historical record

    A Priori error analyses of a stabilized discontinuous Galerkin method

    Get PDF
    AbstractWe introduce a new stabilized discontinuous Galerkin method within a new function space setting, that is closely related to the discontinuous Galerkin formulation by Oden, BabuĆĄka and Baumann [1], but involves an extra stabilization term on the jumps of the normal fluxes across the element interfaces. The formulation satisfies a local conservation property and we prove well posedness of the new formulation. A priori error estimates are derived, which are verified by 1D and 2D experiments on a reaction-diffusion type model problem

    Persistence of hydrometeorological droughts in the United Kingdom: a regional analysis of multi-season rainfall and river flow anomalies

    Get PDF
    This paper investigates the spatial and temporal properties of persistent meteorological and hydrological droughts in the UK at national to sub-regional scales. Using 1961–1990 as the reference period, it is shown that the longest observed run of below average rainfall since the 1870s persisted for four years in northern England and parts of Scotland during 1892–1896. The longest observed run of below average discharge since the 1950s/1960s was found for some groundwater fed rivers in the English lowlands and lasted up to 5.5 years during 1988–1993. Distributions of dry-spell lengths were represented by a Markov model fit to each rainfall and discharge record. This model provides a good fit to observed geometric distributions of spell lengths and provides credible runs of below average river flows lasting up to a decade in some vulnerable catchments in southern England. Droughts of this persistence may not yet have occurred within the instrumented record but could have profound water management implications for the region. Predicted 100-year drought durations for catchments in northern England may not be as long but could have serious ramifications for surface water supplies. These findings point to a risk of irreversible drought impacts on aquatic communities that are simultaneously stressed by unsustainable abstractions, poor water quality and/or habitat modifications

    DNA-encoded nucleosome occupancy is associated with transcription levels in the human malaria parasite Plasmodium falciparum.

    Get PDF
    BackgroundIn eukaryotic organisms, packaging of DNA into nucleosomes controls gene expression by regulating access of the promoter to transcription factors. The human malaria parasite Plasmodium falciparum encodes relatively few transcription factors, while extensive nucleosome remodeling occurs during its replicative cycle in red blood cells. These observations point towards an important role of the nucleosome landscape in regulating gene expression. However, the relation between nucleosome positioning and transcriptional activity has thus far not been explored in detail in the parasite.ResultsHere, we analyzed nucleosome positioning in the asexual and sexual stages of the parasite's erythrocytic cycle using chromatin immunoprecipitation of MNase-digested chromatin, followed by next-generation sequencing. We observed a relatively open chromatin structure at the trophozoite and gametocyte stages, consistent with high levels of transcriptional activity in these stages. Nucleosome occupancy of genes and promoter regions were subsequently compared to steady-state mRNA expression levels. Transcript abundance showed a strong inverse correlation with nucleosome occupancy levels in promoter regions. In addition, AT-repeat sequences were strongly unfavorable for nucleosome binding in P. falciparum, and were overrepresented in promoters of highly expressed genes.ConclusionsThe connection between chromatin structure and gene expression in P. falciparum shares similarities with other eukaryotes. However, the remarkable nucleosome dynamics during the erythrocytic stages and the absence of a large variety of transcription factors may indicate that nucleosome binding and remodeling are critical regulators of transcript levels. Moreover, the strong dependency between chromatin structure and DNA sequence suggests that the P. falciparum genome may have been shaped by nucleosome binding preferences. Nucleosome remodeling mechanisms in this deadly parasite could thus provide potent novel anti-malarial targets

    Scheduling optimization of parallel linear algebra algorithms using Supervised Learning

    Full text link
    Linear algebra algorithms are used widely in a variety of domains, e.g machine learning, numerical physics and video games graphics. For all these applications, loop-level parallelism is required to achieve high performance. However, finding the optimal way to schedule the workload between threads is a non-trivial problem because it depends on the structure of the algorithm being parallelized and the hardware the executable is run on. In the realm of Asynchronous Many Task runtime systems, a key aspect of the scheduling problem is predicting the proper chunk-size, where the chunk-size is defined as the number of iterations of a for-loop assigned to a thread as one task. In this paper, we study the applications of supervised learning models to predict the chunk-size which yields maximum performance on multiple parallel linear algebra operations using the HPX backend of Blaze's linear algebra library. More precisely, we generate our training and tests sets by measuring performance of the application with different chunk-sizes for multiple linear algebra operations; vector-addition, matrix-vector-multiplication, matrix-matrix addition and matrix-matrix-multiplication. We compare the use of logistic regression, neural networks and decision trees with a newly developed decision tree based model in order to predict the optimal value for chunk-size. Our results show that classical decision trees and our custom decision tree model are able to forecast a chunk-size which results in good performance for the linear algebra operations.Comment: Accepted at HPCML1

    Future hot-spots for hydro-hazards in Great Britain: a probabilistic assessment

    Get PDF
    In an increasing hydro-climatic risk context as a result of climate change, this work aims to identify future hydro-hazard hot-spots as a result of climate change across Great Britain. First, flood and drought hazards were defined and selected in a consistent and parallel approach with a threshold method. Then, a nation-wide systematic and robust statistical framework was developed to quantify changes in frequency, magnitude, and duration, and assess time of year for both droughts and floods, and the uncertainty associated with climate model projections. This approach was applied to a spatially coherent statistical database of daily river flows (Future Flows Hydrology) across Great Britain to assess changes between the baseline (1961–1990) and the 2080s (2069–2098). The results showed that hydro-hazard hot-spots are likely to develop along the western coast of England and Wales and across north-eastern Scotland, mainly during the winter (floods) and autumn (droughts) seasons, with a higher increase in drought hazard in terms of magnitude and duration. These results suggest a need for adapting water management policies in light of climate change impact, not only on the magnitude, but also on the timing of hydro-hazard events, and future policy should account for both extremes together, alongside their potential future evolution.</p

    Flux evaluation in primal and dual boundary-coupled problems

    Get PDF
    A crucial aspect in boundary-coupled problems such as fluid-structure interaction pertains to the evaluation of fluxes. In boundary-coupled problems, the flux evaluation appears implicitly in the formulation and, consequently, improper flux evaluation can lead to instability. Finite-element approximations of primal and dual problems corresponding to improper formulations can therefore be non-convergent or display suboptimal convergence rates. In this paper, we consider the main aspects of flux evaluation in finite-element approximations of boundary-coupled problems. Based on a model problem, we consider various formulations and illustrate the implications for corresponding primal and dual problems. In addition, we discuss the extension to free-boundary problems, fluid-structure interaction, and electro-osmosis applications

    Mapping an index of extreme rainfall across the UK

    No full text
    International audienceDistance from the sea, proximity of mountains, continentality and elevation are all useful covariates to assist the mapping of extreme rainfalls. Regression models linking these and other variables calculated from a digital terrain model have been built for estimating the median annual maximum rainfall, RMED. This statistic, for rainfall durations between 1 hour and 8 days, is the index variable in the rainfall frequency analysis for the new UK Flood Estimation Handbook. The interpolation of RMED between raingauge sites is most challenging in mountainous regions, which combine the greatest variation in rainfall with the sparsest network of gauges. Sophisticated variables have been developed to account for the influence of topography on extreme rainfall, the geographical orientation of the variables reflecting the prevailing direction of rain-bearing weather systems. The different processes of short and long-duration extreme rainfall are accounted for by separate regression models. The technique of georegression combines estimates from regression models with a map of correction factors interpolated between raingauge locations using the geostatistical method of kriging, to produce final maps of RMED across the UK

    Pollution control can help mitigate future climate change impact on European grayling in the UK

    Get PDF
    Aim: We compare the performance of habitat suitability models using climate data only or climate data together with water chemistry, land cover and predation pressure data to model the distribution of European grayling (Thymallus thymallus). From these models, we (a) investigate the relationship between habitat suitability and genetic diversity; (b) project the distribution of grayling under future climate change; and (c) model the effects of habitat mitigation on future distributions. Location: United Kingdom. Methods: Maxent species distribution modelling was implemented using a Simple model (only climate parameters) or a Full model (climate, water chemistry, land use and predation pressure parameters). Areas of high and low habitat suitability were designated. Associations between habitat suitability and genetic diversity for both neutral and adaptive markers were examined. Distribution under minimal and maximal future climate change scenarios was modelled for 2050, incorporating projections of future flow scenarios obtained from the Centre for Ecology and Hydrology. To examine potential mitigation effects within habitats, models were run with manipulation of orthophosphate, nitrite and copper concentrations. Results: We mapped suitable habitat for grayling in the present and the future. The Full model achieved substantially higher discriminative power than the Simple model. For low suitability habitat, higher levels of inbreeding were observed for adaptive, but not neutral, loci. Future projections predict a significant contraction of highly suitable areas. Under habitat mitigation, modelling suggests that recovery of suitable habitat of up to 10% is possible. Main conclusions: Extending the climate-only model improves estimates of habitat suitability. Significantly higher inbreeding coefficients were found at immune genes, but not neutral markers in low suitability habitat, indicating a possible impact of environmental stress on evolutionary potential. The potential for habitat mitigation to alleviate distributional changes under future climate change is demonstrated, and specific recommendations are made for habitat recovery on a regional basis
    • 

    corecore