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E.H. van Brummelen · K.G. van der Zee · V.V. Garg · S. Prudhomme

Flux evaluation in primal and dual boundary-coupled
problems

Abstract A crucial aspect in boundary-coupled problems
such as fluid-structure interaction pertains to the evaluation
of fluxes. In boundary-coupled problems, the flux evaluation
appears implicitly in the formulation and, consequently, im-
proper flux evaluation can lead to instability. Finite-element
approximations of primal and dual problems corresponding
to improper formulations can therefore be non-convergent or
display suboptimal convergence rates. In this paper, we con-
sider the main aspects of flux evaluation in finite-element
approximations of boundary-coupled problems. Based on a
model problem, we consider various formulations and illus-
trate the implications for corresponding primal and dual prob-
lems. In addition, we discuss the extension to free-boundary
problems, fluid-structure interaction, and electro-osmosis ap-
plications.

Keywords Fluid-structure interaction, dual problems,
flux extraction, electro-osmosis, free-boundary problems,
goal-oriented adaptivity

1 Introduction

The computational simulation of boundary-coupled problems
is of fundamental importance in many engineering and scien-
tific disciplines. Important examples include (thermal) fluid-
solid interaction, e.g., in aerospace engineering [1] and in
biomechanics [2], electro-mechanical and electro-mechanical-
fluidic interactions in, notably, micro-electro-mechanical sys-
tems (MEMS) [3], electro-osmosis and, generally, free-bound-
ary problems [4], in which an auxiliary free-boundary condi-
tion can be interpreted as a separate subsystem.

In all such applications, the evaluation of fluxes (or trac-
tions), i.e., the value of a certain derivative of a function at
the boundary of a domain, or a function thereof, appears.
The evaluation of fluxes is a standard operation in many
single field computations as well. However, as opposed to
single-field problems, where the flux evaluation typically ap-
pears explicitly as a post-processing operation, in boundary-
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coupled problems the flux evaluation generally appears im-
plicitly in the formulation. The implicit appearance of the
flux evaluation in coupled problems has severe consequences:
if the flux is evaluated incorrectly, then the corresponding
formulation of the coupled problem is unstable. For numeri-
cal methods, this can in turn impede convergence or lead to
suboptimal convergence rates. Dual (adjoint) problems corre-
sponding to such formulations, e.g., in optimization or goal-
adaptive-refinement procedures [5; 6], can exhibit incompre-
hensible behavior. In contrast, if the flux is incorrectly eval-
uated as a post-processing operation, this will generally have
no significant consequences, unless the solution displays sin-
gularities in the vicinity of the boundary, e.g., near re-entrant
corners.

Trace theory, including the treatment of fluxes in com-
putational procedures, is in principle well established; see,
e.g., [7]. Nevertheless, the aspect of flux evaluation and its
pertinence to boundary-coupled problems are commonly un-
noticed, or only observed in the form of the aforementioned
problems.

In this paper, we consider the main aspects of flux evalua-
tion in computational procedures for boundary-coupled prob-
lems. We illustrate the various formulations and implications
on the basis of a simple model problem. In addition, we
consider the properties of dual problems corresponding to
the various formulations, to demonstrate the essential differ-
ences that occur in such dual problems on account of differ-
ent flux treatments. To elucidate that the structure of the
model problem is generic, we consider the analogy with var-
ious boundary-coupled problems, viz., free-boundary prob-
lems, fluid-structure interaction, and electro-osmosis.

The content of this paper is organized as follows: Section 2
presents the statement of the model problem. In section 3, we
consider trace evaluation as a post-processing operation and
we demonstrate the effect of singularities on the various trace
formulations. Section 4 is concerned with an exposition on the
coupled problem and dual problems corresponding to various
trace evaluations. Section 5 treats the extension of the model
problem to three distinct classes of boundary-coupled prob-
lems, viz., free-boundary problems, fluid-structure interaction
and electro-osmosis. Section 6 provides some concluding re-
marks.

2 Problem statement

We consider a bounded domain Ω ⊂ R
d (d ∈ {2, 3}) with

boundary ∂Ω. The boundary is composed of two complemen-
tary parts, ΓD and ΓN. The model problem of concern in this
paper is the flux-extraction problem: Find u : Ω → R and
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α : ΓD → R such that

−∆u = f in Ω (1a)

u = g on ΓD (1b)

∂nu = h on ΓN (1c)

α = ∂nu on ΓD (1d)

where f : Ω → R, g : ΓD → R and h : ΓN → R represent ex-
ogenous data. Problem (1) is referred to as the flux-extraction
problem, because α represents the flux, ∂nu, of the solu-
tion u to the boundary-value problem (1a)–(1c). Evidently,
∂nu (=: α) can be extracted from the solution of (1a)–(1c)
by means of a post-processing operation. However, if α is re-
tained as a separate variable, then (1) constitutes a boundary-
coupled problem, in which the boundary-value problem in
(1a)–(1c) is coupled at ΓD to the identity (1d).

To display the generic properties of (1), we consider the
canonical weak formulation of (1a)–(1c). Let H1(Ω) denote
the collection of square-integrable functions with square-inte-
grable derivatives, and let H1

0,ΓD
(Ω) denote the sub-class of

these functions that vanish on ΓD. The canonical weak for-
mulation of (1a)–(1c) is:

u ∈ ℓg +H1
0,ΓD

(Ω) : a(u, v) = b(v) ∀v ∈ H1
0,ΓD

(Ω) (2)

where ℓ(·) denotes a linear operator, referred to as a lift op-
erator, which assigns to any function (·) on ΓD a function
in H1(Ω) that coincides with (·) at ΓD. Furthermore, the bi-
linear form a : H1(Ω) × H1(Ω) → R and the linear form
b : H1(Ω) → R are given by

a(u, v) =

∫

Ω

[∇u,∇v], b(v) =

∫

Ω

fv +

∫

ΓN

hv (3)

where [·, ·] denotes tensor contraction. For any suitable func-
tion λ on the boundary ΓD and sufficiently smooth u, the
pairing of λ with the flux satisfies

∫

ΓD

λα =

∮

∂Ω

ℓλ∂nu−
∫

ΓN

ℓλ∂nu

=

∫

Ω

ℓλ∆u+

∫

Ω

[∇u,∇ℓλ]−
∫

ΓN

ℓλ∂nu

=

∫

Ω

[∇u,∇ℓλ]−
∫

Ω

ℓλf −
∫

ΓN

ℓλh

= a(u, ℓλ)− b(ℓλ) (4)

The second identity results from integration by parts. The
third identity follows from (1a) and (1c). It is important
to note that the flux (or Neumann or natural) boundary
condition (1c) appears in the weak formulation (2) in the
form

∫

ΓN

hv. Analogously, if problem (1a)–(1c) is coupled at

the boundary ΓD to an auxiliary problem and continuity of
the flux between the two problems is imposed, this results
in a flux functional of the form (4) in the right member of
the auxiliary problem, with λ corresponding to the (trace of
the) test function of the auxiliary problem. According to (4),
this flux functional can be evaluated by pairing the residual
functional corresponding to the solution u of the boundary-
value problem (1a)–(1c), viz., a(u, ·) − b(·), with the lifted
test function ℓλ. It is to be noted that ℓλ does not belong
to the space H1

0,ΓD
(Ω) of test functions in (2), because ℓλ is

non-zero at ΓD.
The structure of the above model problem is generic in

that boundary-coupled problems are generally connected by
continuity of fluxes. This continuity condition leads to a flux

functional in one of the two subproblems, which can be ex-
pressed by pairing the residual functional of the other sub-
problem with a lifted test function, analogous to (4). Sec-
tion 5.2 elaborates this analogy for a fluid-structure-interact-
ion problem; see also [8; 9].

The left- and right-most expressions in (4) encode two dis-
tinct forms of flux evaluation, referred to as direct flux evalua-
tion and flux extraction (or variationally-consistent flux eval-
uation). To appreciate the fundamental distinction between
these two forms of flux evaluation, it is to be noted that the
sequence of identities (4) only hold for sufficiently smooth u.
The integrals in the ultimate and penultimate expressions are
finite whenever u ∈ H1(Ω), while the preceding expressions
are finite if, in addition, ∆u ∈ L2(Ω) and ∂nu ∈ L2(∂Ω).
Therefore, for arbitrary admissible λ, flux extraction corre-
sponds to a bounded functional (on H1(Ω)), while direct flux
evaluation does not. Essentially, this implies that, in contrast
to flux extraction, direct flux evaluation is an inadmissible
operation.

3 Posterior flux evaluation

To illustrate the differences between direct flux evaluation
and flux extraction in numerical procedures, we consider two
model problems, derived from (1). Both model problems are
set in R

2 and are of Dirichlet type, i.e., d = 2 and ΓN = ∅.
In the first model problem, the domain Ω = (0, 1)2 is a unit
square and the exogenous data is selected such that u(x, y) =
cos(πx) sin(πy). We consider the functionals jd(u) =

∫

ΓD

λ∂nu
and je(u) = a(u, ℓλ)− b(ℓλ), corresponding to the left mem-
ber of (4) (with α = ∂nu) and to the right member of (4),
respectively, and

λ(x, y) =











4(x− 1/2) , 1/2 ≤ x < 3/4, y = 0

−4(x− 1) , 3/4 ≤ x ≤ 1, y = 0

0 otherwise

(5)

The exact value of the flux functional is jref = 4(
√
2− 1)/π.

In the second problem, Ω = (−1, 1)2 \ ([0, 1)× (−1, 0]) corre-
sponds to an L-shaped domain and the data is selected such
that the exact solution be given by

u(x, y) = (x2+y2)1/3 sin
(

(2/3) atan(y/x)
)

−(x2+y2)/4 (6)

Note that the solution (6) exhibits a singularity at the origin.
We consider the functionals jd(u) and je(u) corresponding to
the left and right members of (4), respectively, with

λ(x, y) =

{

2(y + 1/2)(1− x), 0 ≤ x ≤ 1,−1/2 ≤ y ≤ 0

0 otherwise

(7)

The exact value of the functional is jref = −3(21/3 + 2)/10.
To avoid proliferation of symbols, we use the same notation
to refer to objects related to the two model problems.

We consider approximations of the two model problems
by means of standard piecewise-linear finite elements. The
domain Ω is covered with a sequence of regular tessellations
of uniform squares with sides of length h ∈ 2−N, which are
further subdivided into four right triangles, to obtain a reg-
ular mesh of uniform triangles. Let Sh denote the standard
finite-element space of continuous piecewise-linear functions
on the mesh with parameter h. Moreover, we denote by Sh

0,ΓD

the collection of functions in Sh that vanish on ΓD. The finite-
element approximation of (2) is:

uh ∈ ℓhg + Sh

0,ΓD
: a(uh, vh) = b(vh) ∀vh ∈ Sh

0,ΓD
. (8)
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Fig. 1 Convergence of the flux functionals jd(u
h) (dashed) and je(u

h)
(solid) versus the mesh parameter h of the finite-element approxima-
tion, for model problem 1 (left) and model problem 2 (right).

where ℓh(·) represents a finite-element lift operator, which as-
signs to any function (·) on ΓD a function in Sh that coincides
with the nodal-interpolant of (·) at ΓD.

Figure 1 plots the error in jd(u
h) and je(u

h) versus h for
test case 1 (left) and test case 2 (right). It can be observed
that for test case 1, which possesses a smooth underlying so-
lution, the two expressions for the flux functional exhibit the
same (optimal [10]) rate of convergence, |ja(uh)−jref | ≤ cah

2,
a ∈ {d, e}. For proper flux extraction, however, the best con-
stant in the error bound, ce, is much smaller than the con-
stant cd pertaining to direct flux evaluation. For test case 2,
which displays a singular solution, the two flux functionals
provide very different convergence behavior: the error corre-
sponding to direct flux evaluation decays only as O(h2/3) as

h → 0, while the error of flux extraction decays as O(h4/3).
We refer to [11, §6.2] for an elaboration on this difference in
the convergence behavior.

4 Primal and dual coupled problems

Next, we consider the finite-element approximation of the
coupled flux-extraction problem (1). We restrict ourselves to
a discussion of the finite-element formulations, but the anal-
yses extend to the underlying weak formulations. We define
T h as the trace space of Sh on ΓD i.e., the collection of func-
tions on ∂Ω that arises by taking the boundary values at ΓD

of functions in Sh. We first consider a finite-element approx-
imation based on the naive weak formulation:

(uh, αh) ∈ (ℓhg + Sh

0,ΓD
)× T h :

a(uh, vh) +

∫

ΓD

(∂nu
h − αh) βh = b(vh)

∀(vh, βh) ∈ Sh

0,ΓD
× T h (9)

with a(·, ·) and b(·) according to (3). Formulation (9) repre-
sents an obvious extension to the weak formulation (8) of the
boundary-value problem (1a)–(1c) by a weak enforcement of
the identity (1d). Formulation (9) defines αh such that the
functional βh 7→

∫

ΓD

αhβh corresponds to direct flux evalua-
tion. We note in advance that the formulation is suspect,
however, in view of the explicit appearance of ∂nu, which rep-
resents an unbounded operator from H1

0 (Ω) to H−1/2(ΓD);
see also section 2. This implies that the final term in the left
member of (9) can be unbounded for admissible u and β.

In conjunction with (9) and a linear functional of interest,
J(u, α), we also consider the corresponding dual problem:

(wh, γh) ∈ Sh

0,ΓD
× T h :

a(xh, wh) +

∫

ΓD

(∂nx
h − δh) γh = J(xh, δh)

∀(xh, δh) ∈ Sh

0,ΓD
× T h (10)

In comparison with the (primal) problem (9), the test and
trial functions have exchanged positions in the bilinear form
in the left member of the dual problem (10).

An alternative formulation of the coupled problem is pro-
vided by

(uh, αh) ∈ (ℓhg + Sh

0,ΓD
)× T h :

a(uh, vh + ℓhβh)−
∫

ΓD

αhβh = b(vh + ℓhβh)

∀(vh, βh) ∈ Sh

0,ΓD
× T h (11)

Formulation (11) implicitly defines αh such that the func-
tional βh 7→

∫

ΓD

αhβh corresponds to flux extraction in accor-
dance with the final expression in (4). Note that the formu-
lation does not explicitly involve the term ∂nu

h.
To derive the associated dual problem, we first reformu-

late (11). To this end, we note that the space Sh

0,ΓD
× T h is

isomorphic to Sh. Given the linear lift operator ℓh(·), a natural
isomorphism is provided by:

I :Sh

0,ΓD
× T h → Sh, I(v, β) = v + ℓhβ

I−1 :Sh → Sh

0,ΓD
× T h, I−1v =

(

v − ℓhv|ΓD

, v|ΓD

)

where (·)|ΓD
denotes the trace of (·) on ΓD. Hence, (11) can

be equivalently recast as:

(uh, αh) ∈ (ℓhg + Sh

0,ΓD
)× T h :

a(uh, vh)−
∫

ΓD

αhvh = b(vh) ∀vh ∈ Sh (12)

The dual problem, associated with problem (12) and linear
functional J(u, α), is given by:

wh ∈ Sh : a(xh, wh)−
∫

ΓD

δhwh = J(xh, δh)

∀(xh, δh) ∈ Sh

0,ΓD
× T h (13)

One can infer that (13) corresponds to a weak formulation of
a Poisson problem for wh with a Neumann condition on ΓN

and a Dirichlet condition on ΓD. The naive dual (10) does not
admit such an interpretation as a boundary-value problem.

To illustrate the difference between the dual formula-
tions (10) and (13), we reconsider test case 1 from the pre-
vious section. Figure 2 plots the dual solution obtained from
the naive formulation (10) (left) and from the appropriate
formulation (13) (right) for a mesh with h = 2−4. It can be
observed that the dual solution of the naive formulation (10)
exhibits unexpected non-smooth behavior near the boundary,
as opposed to the solution of (13).

5 Extensions

To show that the structure of the model problem in Sec-
tions 2–4 is generic, we consider in this section the anal-
ogy between the model problem and three distinct classes
op boundary-coupled problems, viz., free-boundary problems,
fluid-structure interaction and electro-osmosis.
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Fig. 2 The dual solution wh computed using the unstable formula-
tion (10) (left) and the stable formulation (13) (right) on a 1024-
element mesh (h = 2−4).

5.1 Free-boundary problems

For definiteness, we consider a model free-boundary prob-
lem referred to as the Bernoulli free-boundary problem [4]
or Alt-Caffarelli problem [12]. This problem consists in find-
ing, simultaneously, a function u : Ω → R and its domain of
definition, Ω, with boundary ∂Ω consisting of a fixed part ΓN

and a variable part ΓF (the free boundary), such that

−∆u = f in Ω (14a)

∂nu = h on ΓN (14b)

u = g on ΓF (14c)

∂nu = h on ΓF (14d)

where f, h : R
n → R represents sufficiently smooth data

such that h > 0 on ΓF. Moreover, for simplicity, we assume
g : Rn → R to be constant. Comparing (14) with the flux-
extraction problem (1), we note that (the position of) ΓF

plays a role similar to α. However, unlike (1), which is a
one-way coupled problem, the free-boundary problem (14) is
two-way coupled, and (14a)–(14d) must be treated simulta-
neously. Based on the discussion in Section 4, it is natural to
consider a formulation based on (14a)–(14c) and treat (14d)
using flux extraction (cf. (11)):

(u,Ω) ∈ (ℓg +H1
0,ΓF

(Ω))×O :

a(Ω;u, v + ℓβ)− b(Ω; v + ℓβ)−
∫

ΓF

hβ = 0

∀(v, β) ∈ H1
0,ΓF

(Ω)× T (15)

whereO is a set of admissible domains, T is a suitable space of
functions on ΓF, and a(·; ·, ·) and b(·; ·) are the same as in (3),
except that these forms now explicitly include the dependence
on the unknown domain Ω. Assuming that H1

0,ΓF
(Ω) × T is

isomorphic to H1(Ω), we can recast (15) as:

(u,Ω) ∈ (ℓg +H1
0,ΓF

(Ω))×O :

a(Ω;u, v)− b(Ω; v)−
∫

ΓF

hv = 0 ∀v ∈ H1
0,ΓF

(Ω) (16)

For nonlinear problems such as the free-boundary prob-
lem (14), the dual formulation is based on the linearized ad-
joint. We will show that the structure of the linearization
of (14) is very similar to the model problem (1). Let us
remark that the linearization of free-boundary problems is
nontrivial owing to their geometric nonlinearity. One method
of linearization uses techniques from shape calculus [13; 14].

Without proof, we assert that the linearization of (14) around

an approximation state (û, Ω̂) in compliance with

−∆û = f in Ω̂

∂nû = h on ΓN

û = g on Γ̂F

with Γ̂F the approximation to the free boundary correspond-
ing to Ω̂, is given by:

−∆u = f in Ω̂ (18a)

∂nu = h on ΓN (18b)

u+ hα = g on Γ̂F (18c)

∂nu− cα = h on Γ̂F (18d)

where c = f +∂nh+κh and κ denotes the additive curvature

(sum of n−1 curvatures) of Γ̂F. Note that (18) is posed on the

fixed domain Ω̂ and, instead of the unknown free-boundary,
we now have an unknown boundary field α : Γ̂F → R, which

represents a perturbation of Γ̂F in the normal direction.
The linearized free-boundary problem in (18) is similar

to (1), in that two conditions hold on Γ̂F, involving both the
state (u), the flux (∂nu) and an auxiliary variable (α). As
opposed to (1), however, the auxiliary variable appears in
both boundary conditions (18c) and (18d). The key aspect in
the analogy to (1), however, pertains to the fact that the flux
in (18d) is properly evaluated by means of flux extraction.
This leads to the formulation:

(u, α) ∈ (ℓg − ℓhα +H1
0,Γ̂F

(Ω̂))× T̂ :

a(Ω̂;u, v)−
∫

Γ̂F

cαv = b(Ω̂; v) +

∫

Γ̂F

hv ∀v ∈ H1(Ω̂) (19)

In (19), we have replaced the original test spaceH1
0,Γ̂F

(Ω̂)× T̂

by H1(Ω̂), under the standing assumption that these two
spaces are isomorphic; cf. (12) and (16).

Based on (19), the dual problem pertaining to a linear
functional J(u, α) reads:

w ∈ H1(Ω̂) : a(Ω̂;x,w)−
∫

Γ̂F

cδw = J(x, δ)

∀(x, δ) ∈ (−ℓhδ +H1
0,Γ̂F

(Ω̂))× T (20)

Note that the relation between u and α in the trial space
in (19) can be extended to x and δ in the test space of the
dual problem (20).

To facilitate the extraction of a corresponding boundary-
value problem from (20), we introduce the change of variables

(x, δ) = (x̃+ ℓδ̃,−δ̃/h), to recast (20) into:

w ∈ H1(Ω̂) : a(Ω̂; x̃+ ℓδ̃, w)+

∫

Γ̂F

c
h
δ̃w = J(x̃+ ℓδ̃,− 1

h
δ̃)

∀(x̃, δ̃) ∈ H1
0,Γ̂F

(Ω̂)× T̂ (21)

The isomorphism between H1
0,Γ̂F

(Ω̂)× T̂ and H1(Ω̂) yields

w ∈ H1(Ω̂) :

a(Ω̂; x̃, w) +

∫

Γ̂F

c
h
x̃w = J(x̃,− 1

h
x̃) ∀x̃ ∈ H1(Ω̂) (22)

One can infer that (22) corresponds to a weak formulation of
a Poisson problem for w with a Neumann condition on ΓN

and a Robin condition on Γ̂F; see also [13].
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5.2 Fluid–structure interaction

We next consider the analogy between the model problem (1)
and a fluid-structure interaction problem, in which the incom-
pressible Navier–Stokes equations are coupled to an elastic-
ity problem. The incompressible Navier–Stokes equations are
given by

ρu′ + divρuu+∇p− υ∆u = f in Ω (23a)

divu = 0 in Ω (23b)

where u and p denote the fluid velocity and pressure, respec-
tively, and (·)′ denotes the temporal derivative. Moreover,
ρ and υ respectively denote the homogeneous fluid density
and viscosity. The solid problem is specified on a reference
domain Ξ̄ by

ηϕ′′ −DivP (ϕ) = F in Ξ̄ (24)

where η denotes the structure density in the reference con-
figuration, P denotes the first Piola–Kirchhoff stress tensor,
ϕ : Ξ̄ → R

d represents the displacement field and the map
ϕ 7→ P (ϕ) is a constitutive relation. The actual domain
corresponding to (24) is Ξ = Ξ̄ + ϕ(Ξ̄). In (24) and fur-
ther, we adhere to the customary notation that the diver-
gence and gradient operators in the reference configuration
are indicated by capitalized initials. The Navier–Stokes equa-
tions (23) and the elasticity problem (24) are coupled at the
interface Γ = ∂Ω ∩ ∂Ξ by the kinematic and dynamic inter-
face conditions:

u ◦M = ϕ
′ on Γ̄ (25a)

((pn− ν∂nu) dΓ ) ◦M = PN dΓ̄ on Γ̄ (25b)

where M denotes the map ξ 7→ ξ + ϕ(ξ) between the struc-
tural reference domain, Ξ̄, and the actual domain, Ξ, and
Γ̄ = M−1Γ is the representation of the interface in the refer-
ence domain. Moreover, dΓ and dΓ̄ denote the surface mea-
sures in the actual and reference domains, respectively, and
n and N respectively denote the outward unit normal vec-
tors on the boundaries of the fluid domain and of the struc-
tural reference domain. We suppose that the dynamic con-
dition (25b) is imposed as a natural boundary condition on
the structure subproblem. Moreover, for transparency and
without loss of generality, we assume that (24) satisfies ho-
mogeneous Dirichlet boundary conditions on Γ̄D = ∂Ξ̄ \ Γ̄ .
Considering a fixed time interval (0, τ ), the weak formulation
of (24) subject to the aforementioned boundary conditions
reads:

ϕ : (0, τ ) → [H1
0,Γ̄D

(Ξ̄)]d :

as(ϕ,w) = bs ∀w ∈ [H1
0,Γ̄D

(Ξ̄)]d

everywhere in (0, τ ), where

as(ϕ,w) =

∫

Ξ̄

[ηϕ′′,w] +

∫

Ξ̄

[Gradw,P ],

bs(w) =

∫

Ξ̄

[F ,w] +

∫

Γ̄

[

((pn− ν∂nu)J) ◦M,w
]

,

with J = dΓ/dΓ̄ . We suppose that (25a) is imposed as a
Dirichlet boundary condition on the fluid subproblem (23).
Furthermore, without loss of generality, we assume that (23)
complies with homogeneous Neumann boundary conditions

on the complementary part of the boundary. This leads to
the following weak formulation:

(u, p) : (0, τ ) →
(

ℓϕ′◦M−1+[H1
0,Γ (Ω)]d

)

×L2(Ω) :

af(u, p,v, q) = bf(v, q) ∀(v, q) ∈ [H1
0,Γ (Ω)]d × L2(Ω)

everywhere in (0, τ ) with

af(u, p,v, q) =

∫

Ω

[ρu′,v] +

∫

Ω

[divρuu,v] + υ

∫

Ω

[∇u,∇v]

−
∫

Ω

pdivv −
∫

Ω

q divu

bf(v, q) =

∫

Ω

[f , v]

It is to be noted that the kinematic condition (25a) is imposed
by means of the lift operator ℓϕ′◦M−1 . Similar to (4), the
interface contribution to the structural load functional, bs,
can be recast into:

∫

Γ̄

[

((pn− ν∂nu)J) ◦M,w
]

=

∫

Γ

[

pn− ν∂nu,w ◦M−1]

= af(u, p, ℓw◦M−1 , q)− bf(ℓw◦M−1 , q) (26)

for arbitrary q. The first identity follows from a transforma-
tion of the integral from Γ̄ to Γ .

In analogy with the model problem, the coupling between
the fluid and the structure occurs through a flux functional
in the structure subproblem, and this flux functional is ap-
propriately evaluated by pairing the residual functional of
the fluid subproblem with a lift of the structure test func-
tion. Moreover, direct evaluation of the flux pn− ν∂nu cor-
responds to an unbounded operator. We refer to [15; 16] for
further elaboration on traction evaluation in fluid-structure
interaction.

We remark that the traction extraction encoded by the
final expression in (26) actually corresponds to the conti-
nuity of the test function between the fluid and structure
subsystems; see, for instance, [17]. In so-called generalized-
continuum formulations of fluid-structure interaction, such
continuity of test (and trial) functions is intrinsic.

5.3 Electro-osmosis

Finally, we consider the analogy between the model problem
in (1) and electro-osmosis applications. Electro-osmosis refers
to the phenomenon that a fluid in a channel moves under
the effect of an electric field aligned with the channel wall,
by virtue of the electric double layer (the Debye layer) that
develops between the fluid and the channel wall. The electric
field induces a force on the charged particles of the double
layer, and viscous forces in the fluid in turn drive the bulk
fluid in the direction of the electric field.

A standard model of electro-osmosis is the Helmholtz-
Smoluchowski wall-slip model. This model assumes that the
body-force term in the Navier–Stokes equations engendered
by the electric double layer can be replaced by an effective slip
velocity on the boundary, given by uwall = (κΨ0/ν)E, with κ

and ν being the dielectric constant and viscosity of the fluid,
respectively, Ψ0 the electric zeta potential of the wall and E
the applied electric field. This approximation has been val-
idated through both experiments and numerical simulations
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[18]. The Helmholtz–Smoluchowski model of electro-osmosis
translates into a boundary-coupled problem of the form:

−div(σ∇φ) = 0 in Ω (27a)

∂nφ = 0 on Γ (27b)

−∆u+∇p = 0 in Ω (27c)

−divu = 0 in Ω (27d)

u = −∇φ on Γ (27e)

where σ denotes the electric conductivity of the fluid, φ de-
notes the electric potential and Γ represents the channel wall.
The auxiliary boundary conditions are irrelevant for the ex-
position below. We refer to [19] for further details, including
different formulations and an elaboration of the numerical
experiments in this section.

A fundamental complication in the numerical approxima-
tion of (27) concerns the enforcement of the Dirichlet bound-
ary condition (27e) for the fluid. A naive approach would be
to impose this condition strongly in the space for u. Accord-
ingly, (27) would be condensed into the weak formulation:

(φ,u, p) ∈ H1(Ω)× (ℓ−∇φ +H1
0 (Ω))× L2(Ω)

af(u, p,v0, q) + ae(φ, ψ) = 0

∀(ψ,v0, q) ∈ H1(Ω)×H1
0 (Ω)× L2(Ω) (28)

where

af(u, p,v, q) =

∫

Ω

[∇u,∇v]−
∫

Ω

p divv −
∫

Ω

q divu

ae(φ, ψ) =

∫

Ω

σ[∇φ,∇ψ]

To elucidate the structure of (28), we modify the formulation
by imposing the Dirichlet boundary condition (27e) by via a
Lagrange multiplier. We then obtain the following equivalent
formulation:

(φ,u, p) ∈ H1(Ω)×H1(Ω)× L2(Ω)

af(u, p,v0, q) + ae(φ,ψ) +

∫

Γ

[u+∇φ,β] = 0

∀(ψ,v0, q,β) ∈ H1(Ω)×H1
0 (Ω)× L2(Ω)× T (29)

where T represents a suitable (vector-valued) trace space
on Γ . Formulation (29) conveys that the normal component
of u in the above formulations corresponds to a direct evalu-
ation of the electric flux ∂nφ. In formulation (29), the direct
flux evaluation is manifested by the (unbounded) functional
β 7→

∫

Γ
([u,n] + ∂nφ) [β,n]. In a similar manner as for the

model problem, the dual formulation of (29) (or (28)) exhibits
unstable behavior; see Figure 3. We remark that the enforce-
ment of the tangential component generally does not present
a problem, by virtue of tangential integration-by-parts iden-
tities. Detailed discussion of this matter is beyond the scope
of this paper; see [19].

To avoid direct flux evaluation, a formulation based on
flux extraction can be considered:

(φ,u, p) ∈ H1(Ω)×H1(Ω)× L2(Ω)

af(u, p,v0, q) + ae(φ, ψ + ℓ[β,n])

+

∫

Γ

[u+ [∇φ, t]t,β] = 0

∀(ψ,v0, q,β) ∈ H1(Ω)×H1
0 (Ω)× L2(Ω)× T (30)

Note that the test-function pair (v0,β) can not be combined
into a single test function in H1(Ω), because v0 appears sep-
arately in (30). However, if we identify β with the rescaled
trace of a function v ∈ H1

0 (Ω) according to β = 1
ǫ
v|Γ , then

we can derive the inconsistent penalty formulation:

(φǫ,uǫ, pǫ) ∈ H1(Ω)×H1(Ω)× L2(Ω)

af(uǫ, pǫ,v, q) + ae(φǫ, ψ + 1
ǫ
ℓ[v,n])

+

∫

Γ

1
ǫ
[u+ [∇φ, t]t, v] = 0

∀(ψ,v, q) ∈ H1(Ω)×H1(Ω)× L2(Ω) (31)

One can show that (φǫ,uǫ, pǫ) converges to the solution of
the electro-osmosis problem as ǫ → 0. The modified formu-
lation (31) allows a convenient implementation of both the
primal and corresponding dual problems. Essentially, formu-
lation (31) replaces the Dirichlet condition (27e) by the mixed
condition

(∂nu− pn) + 1
ǫ
(u+∇φ) = 0 (32)

Equation (32) corresponds to regularization of the boundary
condition (27e) by means of a penalty method.

It is to be mentioned that an alternative method for the
weak enforcement of Dirichlet boundary conditions is pro-
vided by Nitsche’s Verfahren [20; 21]. However, Nitsche’s Ver-
fahren relies on a direct-flux-type term in the variational for-
mulation. Accordingly, the corresponding bilinear or semilin-
ear form is unbounded, unless the functional setting is appro-
priately modified.

To illustrate the difference between the dual problems cor-
responding to the unstable formulation (28) and the regular-
ized formulation (31), we consider an electro-osmosis problem
on the quadrangle Ω = (0, 5) × (0, 1). The electric conduc-
tivity is set to σ(x1, x2) = 1 + x1. The functional of inter-
est that appears on the right-hand side of the dual problem
is chosen here as the flow rate J(φ,u, p) =

∫

ΓO

[u,n] with
ΓO = {(x1, x2) ∈ ∂Ω : x1 = 5}. The regularization parameter
is set to ǫ = 10−10. Simulations are performed using the
libMesh Finite Element library [22]. Figures 3 and 4 present
the dual electric fields for the unstable formulation (28) based
on direct flux evaluation and the regularized formulation (31),
respectively. Figure 3 illustrates that direct flux evaluation
leads to oscillations in the dual electric field at the channel
wall. In contrast, the dual solution obtained from the regu-
larized formulation (31) in Figure 4 is smooth. This dual so-
lution is appropriate for error estimation and adaptive mesh
refinement; see [19].

6 Conclusion

Motivated by the fundamental importance of flux evaluation
in boundary-coupled problems, we presented an analysis of
flux-evaluation formulations. Based on a generic model prob-
lem, we showed that direct flux evaluation is characterized by
an unbounded operator. We moreover established that proper
flux extraction, corresponding to a pairing of the residual
functional of the boundary-value problem with a lifted test
function, does not suffer from this deficiency.

By means of numerical experiments, we showed that in
finite-element approximations, direct flux evaluation and flux
extraction yield a different behavior in the approximate so-
lutions. For a problem with a regular solution, both methods
exhibit the same optimal rate of convergence under mesh re-
finement, but the constant in the error bound is much smaller
for flux extraction than for direct flux evaluation. For a prob-
lem with a singular solution, flux extraction yields a faster
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Fig. 3 Dual electric potential (µ) of the adjoint electro-osmosis prob-
lem corresponding to the formulation (28) based on direct flux evalu-
ation (top) and its trace on the bottom boundary (bottom).

x
1

0 1 2 3 4 5
0

0.5

1

1.5

-0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

µ

x
2

0 1 2 3 4 5

−0.1

−0.06

−0.02

0.02

0.06

0.1

x
1

µ

Fig. 4 Dual electric potential (µ) of the adjoint electro-osmosis prob-
lem corresponding to the regularized formulation (31) (top) and its
trace on the bottom boundary (bottom).

rate of convergence: for direct flux evaluation, the error de-
cays as O(h2/3), while for flux extraction the error decays as

O(h4/3), as the mesh width h tends to 0.
For the model coupled problem, we showed that solutions

to dual problems corresponding to the two flux-evaluation
formulations behave very differently. We established that the
dual problem associated with flux extraction represents a
weak formulation of a well-defined boundary-value problem,
as opposed to the dual problem pertaining to direct flux eval-
uation. In the numerical experiments, we showed that the
dual solution associated with direct flux evaluation displays
non-smooth behavior near the boundary, while the dual so-
lution associated with flux extraction exhibits a smooth so-
lution.

Finally, we considered the extension of the results for the
generic model problem to three classes of boundary-coupled
problems, viz., free-boundary problems, fluid-structure inter-
action, and electro-osmosis.
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