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Abstract- We introduce a new stabilized discontinuous Galerkin method within a new function 
space setting, that is closely related to the discontinuous Galerkin formulation by Oden, BabuSka 
and Baumann [l], but involves an extra stabilization term on the jumps of the normal fluxes across 
the element interfaces. The formulation satisfies a local conservation property and we prove well 
posedness of the new formulation. A priori error estimates are derived, which are verified by 1D 
and 2D experiments on a reaction-diffusion type model problem.@ 2003 Elsevier Ltd. All rights 
reserved. 

Keywords- Discontinuous Galerkin methods, A priori error estimation 

1. INTRODUCTION 

In recent years, several variations of discontinuous Galerkin methods (DGM), for second-order 
elliptic boundary value problems have been proposed which exhibit special convergence, conser- 
vation, and local approximation properties attractive for parallel adaptive hp-approximations. 
An account of several types of DGMs can be found in the book edited by Cockburn, Karniadakis 
and Shu [2]. Al so, Arnold, Brezzi, Cockburn and Marini [3] introduced a general framework to 
represent various types of DGMs for elliptic problems. 

In 1997, Oden, Babu&a and Baumann [l] and Baumann [4] introduced a new type of discon- 
tinuous Gale&in formulation that is very similar to the GEM formulation by Delves et al. [5,6], 
but sign differences in certain terms result in a positive definite bilinear form. Although a minor 
difference, the change in sign has remarkable effects. For p 2 2 (where p denotes the minimum 
order of the polynomial approximations), the DGM by Oden, Babuska and Baumann [l] appears 
to be unconditionally stable, whereas the GEM formulation requires the inclusion of penalty 
terms to stabilize the formulation. Moreover, the DGM satisfies a local conservation property, 
which makes it attractive to use in convection-diffusion problems. 

The main drawback with the DGM is that one can observe these advantageous properties 
numerically, but a consistent theory, that involves an appropriate function space setting on which 
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one can prove the well posedness of the formulation, i.e., existence, uniqueness, and stability of 
the solution, does not exist. 

Riviere et al.’ [7-91 proposed a method that is an extension of the DGM by Oden, BabuSka and 
Baumann [l], involving a penalty term on the jumps of the solution across the element interfaces. 
The addition of the penalty term eliminates the local conservation property; but it does stabilize 
the method (the method is stable for p = l), and enables a priori error estimates to be proved 
that are optimal in h and suboptimal in p. However, again an appropriate function space setting 
is lacking, on which Inf-Sup and continuity properties of the bilinear forms could be proved. 
Thus, stability of the solution still remains an open issue. 

In this paper, we start in Section 2 by introducing a new DGM formulation of a model linear 
elliptic boundary value problem, that, in principle, is an extension of the DGM by Oden, BabuSka 
and Baumann [l] but includes an extra stabilization term on the interelement jumps of the fluxes, 
and that (contrary to other penalty-type DGMs) satisfies a local conservation property. We 
introduce a new function space setting and prove in Section 3 that the bilinear form, corresponding 
to this formulation, actually satisfies an Inf-Sup condition. In addition, we establish the existence 
of unique stable solutions to the associated variational boundary value problem. In Section 4, 
we derive a priori error estimates to analyze the rates of convergence of the method. Some 1D 
and 2D numerical experiments to test our analysis are given in Section 5. Finally, concluding 
remarks are summarized in Section 6. 

2. PRELIMINARIES 

2.1. Model Problem and Notations 

Let R c Iw2 be a bounded open domain with Lipschitz boundary Xl and let {Ph} be a family 
of regular partitions of R into open elements K, with diameters hi, such that (see Figure 1) 

Sz = int 

Figure 1. Geometrical definitions. 

The maximum diameter in the partition is denoted h. The set of all edges of the partition Ph 
is given by & = {yk}, k = 1,. . . , Nedge, where Nedze represents the number of edges in the 
partition Ph. The interior interface r int is then defined as the union of all common edges shared 
by elements of partition Ph 

Nedge 
pint = IJ ^(k \ &I. 

k=l 

The definition of the unit normal vector n on each yk is related to the numbering of the elements 
in the partition, such that n is defined outward w.r.t. the element with the highest index number 
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(see Figure 1). The normal vector p is defined outward to each element individually. Within this 
setting, the following reaction-diffusion problem is considered 

-Au+u= f, in 0, 

u = 0, on Xl, (1) 

where f is a real-valued function in L2(CL). For the sake of clarity in the notation, the jump and 
average operators on each ^/k E I?int are, respectively, defined as (see Figure 1) 

bl = yy!xm, - yysca.Y, 7 
1 

(4 = -(wlykCaKi + ~lrr,caK,)7 
(2) 

2 
Tk = int(a& fl dK,), i > j. 

2.2. The Weak Formulation 

First, we introduce the following broken space: 

Mph) = {w E L2(s2) : VIK E H(A,K), VK E Ph, [VW. n] E L2(rint)} , 

where 

(3) 

H(A, K) = {w E L2(K) : V . Vu E L2(K)} c HI(K). 

Notice here, that w E H(A, K) im pl ies VW. p E He1j2(dK) (see [lO,ll]). The norm I]] . ]]I on 
M(Ph), is defined as 

111~1112 = c { IIVlI~‘(K) + ;llvv * Pll;-l/z(aK)} ++lv~ * 4112z(rint). 
KEPI, 

(4 

The parameter p E W that is introduced here represents the minimum of all of the local orders of 
polynomial approximations pK in the partition Ph (see Section 2.3). Notice that the parameters 
u, X, 8, C are greater than or equal to zero and that the subsequent norms in (4) are defined as 

~b~~H-‘/2(i3K) = 
sup 1 (9, h/2x 1/2,aK I 

II’PIIH~/~(~K) 
7 

psHlI=(aK) 

IIPIIHw(~K) = w& IIWh’(K), 
(5) 

^lOW=V 

where (Y *)-1/2~1/2,l3K denotes the duality pairing in H-‘12(dK) x H1/2(8K) and where ^/o 
denotes the trace operator 

7. : H1(K) -+ H112(dK). 

Now, the choice for the space of test functions, V, is the completion of M(Ph) with respect to 
the norm ]]].((I. Th e new discontinuous variational formulation, within this new function space 
setting, is then stated as follows 

find w E V : B(w, w) = L(w), VW E v, (6) 

where the bilinear form B(w, w) and linear form L(w) are defined as 

B:VxV-+lR, L:V-,lR, 

B(w, w) = c 
KEPI, 

{ s,{Vw . VW + ww} dx - LK{w(Vw. p) - (VW ’ 11)~) ds} 

+ s rint {(w) [VW . n] - (w) [VW . n]} ds + / o$[Vw . n][Vw . n] ds, (7) 
rint 

L(w) = fwdx, 
s R 
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where [.] and (.) d enote the jump and average operators, respectively, and where it is understood 
that we use the following notation to denote the duality pairing in Hm1i2(3K) x H1i2(i3K): 

J t3K 
(VW .PL)udS = (VW .C1,21)~-1/2(aK)~~l/~(aK). 

The formulation, although new, is closely related to the DGM formulation by Oden, BabuSka 
and Baumann [l]. Indeed, if we choose the subspace W(Ph) of V of functions with fluxes 
Vu . n E L2(aK), then by using the following identities: 

Cs w(Vu . p) ds = 
KEPT, aK 

l,,., b(Vu .n)l ds + l, VP * 4 ds 

and 
[w(Vw . n)] = [w] (VU. n) + (w) [VU . n], (9) 

we recover the DGM formulation by Oden, Babuska and Baumann [l]. The only difference would 
then be the addition of the last term in (7)2. This term has been incorporated in works by Percell 
and Wheeler [12] and Hughes et al. [13], where it is accompanied by another penalty term on 
the jumps of the functions [w] across the element interfaces. Our motivation to impose only a 
stabilization term in the interelement jumps of the fluxes lies in the fact that by adding only 
this term we can prove both continuity and Inf-Sup properties of the bilinear form with respect 
to the space V, II(.III ( see ec ion 3). In addition, adding this type of stabilization term, does S t 
not disrupt the local conservation property of the weak form, whereas adding the penalty on the 
interelement jumps does eliminate this property. In the case of elliptic problems, it is likely that 
this latter property is of minor importance; however, for hyperbolic problems we expect this to 
be of greater importance and to affect the robustness of the method. 

REMARK 2.1. The DG formulation (6) satisfies a local conservation of balance laws in an average 
sense. By taking 21 = 1 in (7) on an element K E Ph, we obtain 

JKwdx-lK(vw+) ds=&c. 

2.3. The Discrete Problem 

Let {FK} be a family of invertible maps defined for a regular partition P,, such that every 
element K E Ph is the image of FK acting on a master element R, as shown in Figure 2. 

FK:R-+K, x = FK(~). (10) 

12.2 I FK 
- 52 

t 
---* I 

Xl I 
I L _---- ----* 

Xl 

, 
FK 

x2 

Figure 2. Mapping from the master elements to the physical space. 
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In the computational model, a finite-dimensional space of real-valued piecewise polynomial func- 
tions of degree L: pK is introduced, such that 

VhP = ( WEL~(R):W(K=~CJFE~, 6cPPK B , VKEP~ . 
( > 1 01) 

We note that VhP is a subspace of V. Now, an approximation uh of u is sought as the solution 
of the following discrete problem: 

find ‘Ll,, E VhP : B(Uh,?&) = L(?&), v?& E vhp. (12) 

3. WELL POSEDNESS OF THE VARIATIONAL FORMULATION, 
In this section, we establish the well posedness of the variational formulation (6). Thus, we 

show that the solution of the PDE (1) is al so a solution to the weak problem. We prove existence 
and uniqueness of the solution to the weak problem and show its continuous dependence on the 
input data. Essential in some of these proofs are the continuity and Inf-Sup conditions of the 
bilinear form in (7), which will be proved in Sections 3.2 and 3.3, respectively. 

3.1. Relation between the PDE and the VBVP 

We introduce an important lemma [14]. 

LEMMA 3.1. If u E H(A,R), then u and (Vu. n) are weakly continuous across the element 
interface rint in the sense that. 

[Vu. n]cp ds = 0, cp E Wr!c), 

II 8Kj) c I’int. 

THEOREM 3.1. Let u be the solution of (1). Then, u is a solution to the discontinuous VEIVP (6) 
as well. 

PROOF. If we restrict (1) to an element K E Ph, multiply this local equation by a test function 
VK E H2(K), integrate over the element K, and apply Green’s identity, we get 

J {VU. VqK + u(pK} dx - J (P~(VU. p) ds = 
K J f ‘PK dx. 

i3K K 

Repeating this for all K E Ph, extending each PK to zero outside of K, and taking the sum, 
yields 

C (sKlVu.V~+~~}dx-/ax~(Vu.~)ds} = c J fvdx> V'cpE H2(Pdr 
KEPh KEPI. K 

where 
‘p= c (PK, H2(Ph) = {w E L2(s2) : WlK E H2(K), VK E Ph} . 

KEPI, 

Since u is the solution to (l), we know that u satisfies the Dirichlet boundary condition on the 
boundary of R. In addition, it is known that u belongs to H(A, 0). According to Lemma 3.1, this 
implies that u and (Vu . n) are weakly continuous across the element interfaces. Consequently, 
we can add these boundary and continuity conditions to the variational formulation in a weak 
sense, which yields 

c (s {Vu.Vp+u(P}dx- J aK 'p(Vu. P) ds >I + 
KEPT, K 

rint (cp) [Vu. 4 ds 

+ J [u] (VP. n) ds + u(Vv. n) ds + 
rint J 69. J I‘int 

o$[Vu . n][Vcp . n] ds 

= fpdx, J VP E H2(Ph). R 
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Employing now the identities in (8) and (9) gives 

c IS {Vu.Vp+ucp}dx- 
KfPh K J oK{(P(vu~ PI - 4v(P * CL)) ds > 

+ J ri~~~(~)[Vu.n]-(u)(V~.n]}ds+ J o$[v~-nI[Vv.nIds= Jfvdx, pint cl 
vp E HZ(%). 

By applying the density of H2(Ph) in V, we conclude the proof. 

3.2. Continuity Property 

THEOREM 3.2. Let B(. , .) be the bilinear form as defined in (7). If CT > 0, then 

where 

M=maxk,/$,&}. 

PROOF. From the definition of B(., .) an d b o serving that for u, v E V we can write 

then we get 

03) 

B(U,V) = c {~{VvVv+uv}dx-~Kv(Vv+)ds+~K4Vv4ds 
KEPT 

+A J 2 aKnrint 
v[Vv . n] ds - 1 J 2 8Knri,t 

u[Vv~n]ds [VU. n][Vv . n] ds. 
*"t 

By applying the Schwarz inequality and by using the definition of the Hl/‘(aK) norm (5), we 
can bound the above as follows 

B(u,v) 5 max 1, 
{ EYG} 

which establishes the assertion. I 
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3.3. The Inf-Sup Condition 

3.3.1. The auxiliary problems 

Given an arbitrary u E V, find for every K E Ph the function ZK, such that 

-A.zK + ZK = 0, in K, 

vz?$.p=vu.p, on dK. 

The equivalent variational formulation is, 

given u E V, find .ZK E H’ (K) 

., (ZK,~)I,K = 
J 

(Vu . P)YO~ ds, Vv E H’(K), 
8K 

(14) 

where (., .)I,& denotes the H’(K) inner product. By the generalized Lax-Milgram theorem it 
follows easily that the variational BVP has a unique solution zK E H1(K). 

REMARK 3.1. By substituting u and ZK for 2, in (15), we obtain the following two identities: 

(ZK,~)I,K = 
s 

(Vu . /J)-/+,u ds. 
8K 

We also introduce the following theorem, the proof of which is found in [10,11,14]. 

THEOREM 3.3. Given u E V, let ZK = ZK(U) be the unique solution to (15), then the following 
relation holds: 

IIZKIIW(K) = IIVU. AH-w(~K). 

3.3.2. Inf-Sup condition on the space V 

In this section, we prove that the bilinear form B(., .) satisfies the Inf-Sup condition with 
respect to the norm /)I.[/[, defined in (4). L e us start introducing extension operators \kK t 

@‘K : H1(K) -+ V, @K(vK)= 
UK, in K, 

0, inCl\K. 

Hence, given a function u E V, we can solve (15) f or a set, of functions zK(u) and construct a 
function C E V, such that 

c=U+p c *K(zK), (16) 
KG-P, 

where /3 E Iw. 

LEMMA 3.2. Given u E V, then for all ,B E IR, there exists a strjctly positive El = &(h,p) such 
that 

111411 5 ~1111411~ 

PROOF. Substitution of the definition of 6 into (4) and recalling from (14) that (VZL.~) = (Vu-p) 
, we obtain on dK 

11141 1 = c {Il"llb'cK, 
KEPT, 

-t ~(u,@K)I,K + JIPzKII&I(K) -t- (I+ P)2$llV~. L&-vc~KJ} 

hX 
+ 0~0 + P)211[Vu. 4112LZ(~i,tjG 



1296 A. ROMKES et al. 

By applying the Schwarz and triangle inequality and recalling Theorem 3.3, one gets 

Thus, the assertion holds with 

q-. 

LEMMA 3.3. Given u E V, then there exists & = &(o, h,p) > 0, such that 

B(%G) >_ ~21114112. 

(17) I 

PROOF. By replacing 21 by 0 in the definition of B(u, u), and recalling that (VZK + CL) = (VU. p), 
we get 

B(u, 6) = c 
J KEPh 

{ llUll~‘(K) + P(u, ZK)l,K - P J,, ZK(VU. Pc1) ds + P aK ‘LL(Vu. cl> 0% 

+P 
J 

r,nt (ZK) [vu ’ nl ds - @ / r,nt (u) [Vu. n] ds -t 4 + P)$llP * nlll&~int). 

Notice here, that for simplicity, the traces YeZK and Lou have been denoted as ZK and u, respec- 
tively. The definition of the average operator (.) and the jump operator I.1 are given in (2). Now, 
by using the identities given in Remark 3.1, we can rewrite the above expression as follows 

B(U,Q) = c { llullfp(K) + W(u, ZK)I,K - PIIzKII~H~(K) 
KEPh 

- P J,,., (4 IV u. n] ds + a(1 + P)$llIVu. dll&r,.,). 

If we take a closer look at the terms involving integrals over l?i,,t, we see that 

-p L,, (u) [Vu q n] ds L -T c lIuIIfp(~) - ~!II[VU * n1&(r,,)~ 
KE’Ph 

A more detailed derivation of the above expressions can be found in [14]. Now, back substitution 
of these two results into (18), yields 

B(u,~) > c { (I- F) 1141~1~~~ + W(~JK)I,K - (p + F) II~KIIZP(K)) 
KfPh 

+ o(l+P$ 
1 

- IPI} IIP. 411L(Lt). 

By using Young’s inequality, 

&ZK)l,K 5 E(IUI&K) + ~IIzKi~&K)7 & > 0, 
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and applying the Schwarz inequality and Theorem 3.3, one finally obtains 

B(u, 6) 2 c { (1 - ElPl - T) II&‘(K) - (B + T + y) IlV~~ PIIIH-l/.(aK)} 
KEP, 

+ 
1 
a(1 + d)$ - IPI} IIPU. 41&rin& 

With p < 0, this becomes 

B(u,C) L c K 1 - ElPl - g Ilull 
KEPh 

4 > 
H’(K) + (y + F) Ilv~~/~l/&-~/~(~,)) 

+ 41+ I$ 1 - IOI} IIP tie 4112yri”,). 

The second term in the RHS is only positive for E > 4/3. If we take E = 2, then it is clear that, 
given the parameters u, X, C, u, and 8, we can always find a coefficient ,8 such that there exists 
a &(h,p) > 0, defined by 

(19) 

that satisfies the following inequality: 

B(u,fi) 2 E211412. I 

THEOREM 3.4. INF-SUP CONDITION. Given 0 > 0, there exists y = $a, h,p) > 0 such that 

PROOF. By definition of the supremum, one obtains 

sup P(u7v)l > IB(%~iL)l - - 
111411 - 111~111 ’ 

VUEV, 
V~V/{Ol 

where 6 is defined by (16). Next, by applying Lemmas 3.2 and 3.3, we obtain 

IB(%U)l > Pq%fiiL)I > Ez(a, h,P) - ~ 

sup 111411 - lll~lll - Ed~,bP”’ 
VUEV. 

-v/to1 

Thus, Y =&lb. I 

COROLLARY 3.1. If X = v = 0 = C = 0, i.e., the norm III.)) I and the stabilization term are 
independent of h and p, then the Inf-Sup coefficient y is a constant. 

PROOF. For simplicity, we set o = 1. Choosing /3 = 4/10, for example, (17) and (19) yield 
& = &%/lo and & = l/10, respectively, and it follows that y = l/m. I 

COROLLARY 3.2. If X = u and 0 = C, i.e., the h and p dependence of the stabilization term 
and norm I I I. I I I are identical, then for h’/pc < 1 the Inf-Sup coefficient y is bounded below by a 
constant C > 0. 

PROOF. Again, we set u = 1, but now we choose ,B = 4h”/10pe. If we take hx/pc < 1, we obtain 
the following inequalities from (17) and (19): 

Hence, we conclude that y 2 l/m. 
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3.3.3. Inf-Sup condition on the discrete space Vh* 

The following trace theorem [14] is used to establish the Inf-Sup condition on the discrete 
space Vh+. 

LEMMA 3.4. TRACE THEOREM. Let K E ‘ph be characterized by an ai&e mapping FK (see 
Section 2.3) and w E H2(K); then there exists a constant C > 0, independent of hK, such that 

COROLLARY 3.3. Given Wh E P*K (K), a polynomial of degree 5 pi, and given that the mapping 
between K and R is affine, we can state that 

PROOF. Since Wh E PPK (K), we know that ?& E H2(K). Given this information, we can use the 
following inverse inequality, obtained from [15, p. 2081: 

iIVVhb(K) < ~~~~~hIIL’(K), VWh E P”“(K). 

Substitution of this inequality into the inequality in Lemma 3.4 yields 

II’ywh ’ &-W(aK) - < d+~h&(K). hK I 

THEOREM 3.5. INF-SUP CONDITION FOR THE DISCRETE PROBLEM. Let {FK} defineafamily 
of affine invertible mappings. If u > 0, then there exists a yh = yh(a, h,p) > 0, such that 

and 

c > 0. 

PROOF. By definition of the supremum, we get 

sup 
IB(uh,‘Uh)l > B(uh,Uh) 

VhEVhP/{O} lllwhlll - llbhlll ’ 

By applying Corollary 3.3, it is clear that there exists C > 0, such that 

which concludes the proof. I 

3.4. Existence and Uniqueness of Solutions 

LEMMA 3.5. If f E L2(n), then there exists a unique solution w E V to the discontinuous 
variational BVP (6) that is a solution to the model problem (1) (in a weak sense). 
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PROOF. First, we introduce the classical variational formulation of the model problem (1) in the 
space Hi (a). 

Find w E H,‘(R) : A(w,w) = L(w), VW E H;(R), (20) 
where L(w) is defined as in (7) and the bilinear form A(w, w) is defined as follows 

A : i?(R) x H’(O) + R, A(w, w) = 
s 

{VW. VW + ww} dx. 
cl 

By the generalized Lax-Milgram theorem and by equivalence of this formulation to the model 
problem (l), we know that if f E L2(s2) there exists a unique solution w E Hi(R) n H(A, 0) C V 
to (20) that satisfies the model problem in a distributional sense. Consequently, by Theorem 3.1, 
we know that w E V is a solution to the discontinuous VBVP (6) as well. 

Thus, existence of a solution to the discontinuous VBVP follows from the existence theory for 
the continuous variational formulation. Last, the solution is unique because the bilinear form is 
positive definite, i.e., 

B(WlW) = 1 1IaI’(K) 
KEPh 

3.5. Stability 

The last requirement to ensure well posedness of the weak formulation is stability, i.e., contin- 
uous dependence of the solution on the input data. 

PROPOSITION 3.1. If the stabilization parameter is constant, i.e., o = 1, X = C = 0, and if 
the norm parameters are u = 9 = 0, then the solution u to the variational BVP (6) depends 
continuously on the input data, i.e., given a small perturbation bf E L2(s2), then there exists 
unique perturbation 6~. E V such that 

3c > 0 : llWH~(Ph, I: IIIWII I wfllL~(n)~ 

where C is a constant independent of h and p. 

PROOF. Let Sf E L2(s2) be a perturbation in the input data f. Consequently, since the problem 
under consideration is linear, this leads to a perturbation Su E V in the solution u, which satisfies 

B(6u,w) = 
s 

bfwdx, VW E V 
n 

By applying the Inf-Sup condition of Theorem 3.4, we obtain 

(21) 

Substituting (21) and applying the Schwarz inequality, yields 

Since, c = 1, X = v = 0 = C = 0, we know by Lemmas 3.2 and 3.3 and by Theorem 3.4 that the 
Inf-Sup parameter is constant and is at least l/m. I 

In addition to stability with respect to the topology on the space V, we also seek stability in 
the space H’(?h), which is defined as 

Hl(p,) = {w E L2(fl) : WlK E i?(K), tlK E ph}, 

with norm 

ll”ll~l(Ph) = c II4&q. (22) 
KEPh 

In many applications, this space is referred to as the space of functions with finite energy, even 
though it admits discontinuities across the element interfaces. 
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PROPOSITION 3.2. If X = v and 0 = C, i.e., if the h and p dependence of the stabilization term 
and the norm IjI.Ill are identical, then for h’/pC < 1 the solution u to the variational BVP (6) 
depends continuously on the input data; i.e., given a perturbation af E L2(fl), there exists a 
unique perturbation Su E V such that 

3c > 0: IlwlHqPh) 5 lll~4ll I WfllL~(s2)7 
where C is a constant independent of h and p. 

PROOF. By following the steps in the proof of the previous proposition, We get 

ll~4lHVh) 5 $m.cnp 
Application of Corollary 3.2 finishes +he proof. I 

4. A PRIORI ERROR ESTIMATION 

In this section, we investigate the convergence properties of solutions {zL~} of (12). Let u E V 
be the exact solution to the BVP (6), then by using the linearity of B(., a), it follows easily that 
the approximation error e = u - ‘llh is governed by 

We, u> = F(v) - B(uh, v), vu E v, (23) 

where Rh : V -+ IR is the residual finctional. Note that, due to (12), the residual satisfies the 
following orthogonality property on Vh*: 

a(e, vh) = 0, vvh E Vhp. (24 

We start in Section 4.1 by proving an interpolation theorem in the norm III . 111 that we need in 
Section 4.2 for our proof of the error estimate in this norm. Next, Section 4.3 derives the rates 
in the norm I( . llHl(F,,,. Unless stated otherwise, we assume that the family of partitions {ph} is 
regular. 

4.1. Interpolation Error in the Norm III+ 11) 

We introduce a family of interpolants {$,}, such that 

?rh”p : H’K(K) 4 P”“(K), 

nhK,(uh) = uh, \Jvh E P”“(K). 

We will need results for the interpolation errors from the work of BabuSka and Suri [16] (in 
particular, Theorem 4.5 in this reference). 

THEOREM 4.1. INTERPOLATION THEOREM. For ‘p E H’*(K), there exists C > 0, independent 
of cp, pk, and rk, and a sequence ?rhK,((p) E P*k(K), such that 

where ,Uk = min(pk + 1, Tk) 
By extending the local interpolants r,“,( .) to zero outside of K for every K E ph, we can define 

the following global interpolant I&.,: 

&, : v 4 vhp, %d”) = c Tfp(uIK), 
KEPT 

u E v. (25) 
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THEOREM 4.2. INTERPOLATION THEOREM. Let u E V and uII( locally be in NTk(K), rk > 2, 
let the stabilization parameters o > 0 and A, 5 2 0, and fet the norm parameters v, 8 > 0, there 
exists C > 0, independent of u, h, and p such that the interpolation error r] = u - nhpu can be 
bounded as follows: 

where 

3 x 
p*=min ~-l,~-~+~,~-z+;i 

i 1 
, 

3e 3c 
T*=min T--~,T---~+,,~-~+~ 

{ I 
, 

p=min(p+l,r), 

and where T = minKcph (r~). 

PROOF. By recalling the definition of the norm 11 I. 1 I\ (4)) applying the triangle inequality, and 
using Trace Lemma 3.4, we get 

Now, application of the interpolation Theorem 4.1 gives our final result 

4.2. Error Estimates in the Norm I\\.\\\ 

THEOREM 4.3. Given o > 0, let u E H2(R)flV be the unique solution to the variational BVP (61, 
uh E VhP be an approximation (12) f o u, and both the stabilization and norm parameters be of 
order O(h/p2) (i.e., X = u = 1 and C = 19 = 2). Then, the error u - Uh satisfies the bound 

where T = minKEPh (TK) and p = min(p + 1, r) and C( o is a positive constant depending on 0. ) 

PROOF. Given the interpolant nhpZl (25)) we split e such that e = 77 - <, where 77 = u - &pU and 
t = uh - nhpU. Notice that [ E VhP and that the interpolation error q E H2(‘&). Consequently, 
by using the triangle inequality, one obtains 

lib - uhlll 5 11btll f IIItlll. (26) 

By applying the discrete inf-sup condition of Theorem 3.5 and taking u = 1 and 0 = 2, one gets 

lll(-lll 5 c sup IB([++ 
v~EV~P/{O} llbhlll 

By using the orthogonality property (24), the inequality can be rewritten as 
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By taking X = 1 and C = 2 and applying Theorem 3.2, this becomes 

IIIEIII 5 w~lllolll. 

Thus, returning to (26), we can conclude 

Ilb - All I wLlllvlll. 
JTZ’ 

With this choice of coefficients we have, we get for the parameters in Theorem 4.2 

p* =p-1, r* =?--1. 

Hence, by applying the interpolation Theorem 4.2, we conclude the proof. I 

Since 114~~(~,,) I IIl4II, th e a b ove theorem would imply suboptimal convergence rates for the 
error in the norm ]] 9 ]]H1(Fh,. However, in the next section, we derive optimal h convergence 
rates for the error in this specific norm. Unfortunately, these rates are limited to cases where 
p 2 2. For p = 1, we do not prove an optimal convergence rate, but at least we prove the 
solutions converge. To this date, convergence for p = 1 had not been proved for Oden, Babuska 
and Baumann [l]-type DGMs that do not include penalty terms on the jumps across the element 
interfaces. 

4.3. Error Estimates in the H1(Ph) Norm 

In the following, we derive optimal h convergence rates for the error in the norm ]I . ]]H1(ph) for 
p > 2. The decisive element in the proof is the use of a specific type of interpolants, that were 
introduced by Riviere et al. [7-91. Th e original estimates were then improved in [17,18,22]. By 
using these interpolants, we succeed at proving optimal h convergence rates for p 1 2, but the p 
convergence rates appear to be l/2 order lower than the one predicted in the previous section. 
So, we succeed at improving the h convergence rate, but ‘not the p rates. 

We start our analysis by defining the following norm on H’(Ph): 

II1411sqph) = (27) 

LEMMA 4.1. The bilinear form B is continuous 1141 on H’(Ph) x H2(Ph) with respect to the 

norm III . IIIH~(P~), i.e., 

SK ’ 0 : IB(%v)l I ~Ill4lIH~(Ph,lll4IIH~(Ph)~ vu,v E H2(Ph), 

where K is a constant, independent of h and p. 

Next, we introduce an important inverse inequality [14] between the spaces H’(Pb) and H2(Ph) 
for finite-dimensional functions vh that are in Vhp. 

LEMMA 4.2. Let the parameters in the norm ]I . ]]H2(ph) be set as X = C = 1, then the following 
inverse relation holds: 

3c > 0 : IIIwh - ahlIIH2(P,) 5 C(o)~b’hl~H’(Pp,)> VW,, E vhp, 

where tih denotes the piecewise average of vh 

vh = c UhlK, 

KEPT 

Similar to our proofs in the other sections, we need a theorem on the interpolation error in 
the norm III. IIIH~P,). As mentioned previously, here we do not use the Babuska and Suri [16] 
interpolants but rather the interpolants proposed by Riviere et al. [7-91. 
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THEOREM 4.4. INTERPOLATION THEOREM. Let ‘p E IF(K), rk 2 2, there exists C > 0, 

independent of cp, pk, and rk, and an interpolant ??&p(p E P*k (K), such that 

s 
v(cp-iihK,cp)qLds=O (29) 

rcaK 

hllk-1 

(Iv9 -  vii&~l~,2(,) 5 c~bllXr”(K,, Pk 2% 
pk 

where pk = min(pk $ 1, rk). 

Again, by extending the corresponding local interpolant iihK,(.) equal to zero outside of each 
K E Ph, we can define a global interpolant on V 

rI/&* : v --i S/h*, fib,(u) = c *hK,b,K), 
KEPT 

u E v. (30) 

THEOREM 4.5. INTERPOLATION THEOREM. Letu E H2(R)nV, &Ju) E Vh* be the interpolant 
of u (30) and let the stabilization parameters o > 0 and X,< 2 0, then there exists C(a) > 0, 
independent of u, h, and p such that the interpolation error can be bounded as follows: 

where 

** 1x 3x 
P ~--l,~-~-~,~--+t , 

** 3 3c 7c r r----,r------,r--+- 
2 22 42 

, 

p = min{p+ l,r), 

and where r = minK#,, (rK). 

PROOF. By recalling the definition of the norm ]]].]]]nz(p,,) ( 27 substituting trace Lemma A.3 ), 
in [17] and Lemma 3.4, one gets 

ll177111sI~(Ph) = 
U KEPh 

IIvIIK~~KJ + 5 (IIvIIL~(K, +~ll~1711~~~~~Il~II~~~~~) 

By applying the interpolation Theorem 4.4, we conclude the proof. I 

THEOREM 4.6. ERROR ESTIMATE. Given e > 0. Let ‘u. E H2(n) n V be the exact solution to 
the BVP (6), uh E VhP be a discrete approximation (12) and let the stabilization parameter be 
of order O(h/p) ( i.e., X = 1 and C = l), then there exists C(a) 2 0 such that 

II’11 - whf’(P,) I CC4 $&qE,.7’ P?% 
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where p = min(p + 1, r). 
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PROOF. Given the interpolant fihPu in (30), we again split e such that e = r] - t, where n = 
u - fih,u and [ = uh - I&u. By using the triangle inequality, one obtains 

From (7) and (22), follows that 

By using the orthogonality property (24) and the linearity of B(., .), this can be rewritten as 

where < denotes the piecewise average (28) of t. N ow, by applying Lemma 4.1 to the first term 
in the FUIS, we get 

ll~ll~I(P,, I qJI~-FIIIHa(p,) IllrllllH~(Ph) +Bb$ 

By applying the inverse inequality of Lemma 4.2, we can rewrite the above inequality as 

As we shall now see, the term B(Q,~) can be bounded in terms of llEllH~(p,,, as well, due to the 
special property (29) of the interpolant Ifjhp. By expanding the term B(q, <), we get 

Now, applying the property (29), gives 

B (rl$ = c / 77% I Ilvll~yn) llfl/L2cn, I ~ll~ll~~~n,IIEII~~c~,,~ 
KEPI, K 

Back substitution of this result into (32) and (31), then yields 

lb - dlH’(Ph) - < C~4filIlrllIIH~(Ph)~ 

Next, by recalling the interpolation Theorem 4.5, we get 

I(u - uh /H’(P,) 5 c(a) - $:::,, JTipz 

Since X = C = 1, we know that p** = p - 1 and r** = T - 2. I 

REMARK 4.1. If we combine the results of Theorems 4.3 and 4.6, we can conclude that for a 
stabilization term of order O(h/p’) and for p 2 2, the convergence rates are of order p - 1 and 
r - 2 for h and p convergence, respectively. 

5. NUMERICAL RESULTS 

Convergence rates are presented in Section 5.1 for the case of a one-dimensional version of the 
model problem. Section 5.2 shows results for the two-dimensional case. 
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Figure 3. Variation of the norm 11j.lij of the approximation error with degrees of 
freedom and for two orders of h of the stabilization and norm parameters. 

5.1. One-Dimensional Tests 

We consider the following one-dimensional version of problem (1): 

-%+?A, forO<z<l, 

u(0) = u(l) = 0. 

The exact solution to this problem is 

u(z) = 1 - 
e” + elm2 

lfe . 

(33) 

Using the one-dimensional experiments, we investigate how the convergence of the approximate 
solutions is affected by the order of the stabilization terms, and we verify the a priori error 
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1 10 100 1000 10000 
dofs 

(4 O(l). 

(b) O(h). 
Figure 4. Variation of the H1(7J ,, )- norm of the approximation error with degrees of 
freedom for two orders of h of the stabilization and norm parameters. 

estimates that were derived in Section 4. In Figures 3-5, the computed convergence of the 
approximation error u - uh is shown for two separate cases. 

1. The stabilization and norm parameter are of order O(1) (i.e., X = v = 0). 
2. The stabilization and norm parameter are of order O(h) (i.e., X = v = 1). 

Notice that the uniform h convergence rates are obtained via the following rule: 

In Figure 3, the results are shown with respect to the norm / 1).1/I. It is clear that changing the 
order of the stabilization term from O(1) to O(h) d oes improve the convergence, especially for 
the case where p = 1. For p 1 2, a lesser effect is observed, for p = 3 the rate gets slightly 
worse. Also, for p = 1 and p = 3, rates of convergence of l/2 and 2.5 for a stability term of 
order O(h) are observed in agreement with the predicted rate by Theorem 4.3. For even-order 
approximations, higher rates by an order of l/2 are observed. 
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Figure 5. Variation of the L2(C2)- norm of the approximation error with degrees of 
freedom for two orders of h of the stabilization and norm parameters. 

In Figure 4, the results are shown for the approximation error in the H’(ph) norm. Indeed, 
optimal convergence rates are obtained for p 2 2 when the stabilization term is of order O(h) 
(see Theorem 4.6). Even for p = 1, the solutions converge with an optimal rate, although we can 
only prove a lower rate (Theorem 4.3). 

The results for the approximation error in the L2(s2) norm are shown in Figure 5. Changing 
the order of the stabilization term from O(1) to O(h) only improves the convergence rate for the 
case where p = 1. Furthermore, as is also observed for the DGM formulation by Oden, Babuska 
and Baumann [l], suboptimal convergence rates are achieved for convergence in the L2(s2) norm 
when even-order polynomials are used. Apparently, the stabilization on the fluxes is not sufficient 
to stabilize the method to optimal convergence in L2(s2) for these cases. 

5.2. Two-Dimensional Convergence Tests 

For our 2D example problem, we consider the following BVP, given on the unit square R = 
(0,l) x (0,l) with prescribed Dirichlet boundary conditions on afl 
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-Au+u.=O, in Q, 

44Y) = 41, Y) = 0, Y E [0,11, 
u(z, 0) = 0, ~(5, 1) = i sin(rz) sinh ds, z E [O, 11. 

(36) 

The exact solution to this problem is 

U(Z, y) = f sin(rz) sinh (d-y) . . (37) 

In the convergence analyses performed here, the orders of the norm and stabilization parameters 
are set equal to O(1) and O(h), as is done in the experiments of the previous section. 

In Figure 6, the results are shown for the approximation error in the H1(Ph) norm. Figures 6a 
show the results for stabilization and norm parameters of order O(l), whereas Figures 6b show 
the results when the order of these parameters are of O(h). It is evident that for a constant 
stabilization parameter, suboptimal convergence rates are obtained. By setting the stabilization 
parameter to O(h), the rates become optimal, as is predicted in Theorem 4.6. Notice though, 
that the results for p = 1 again are of order l/2 better than the predicted rates. Theorem 4.3 
indicates that for a stabilization parameter of order O(h), the convergence rate for p = 1 should 
be at least equal to l/2, whereas a rate equal to 1 is obtained here. 

In Figure 7, the convergence results in the L2(s2) norm are shown. For p = 1 and p = 3, the 
convergence rates improve when the order of the stabilization term changes from O(1) to O(h). 
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Figure 6. Variation of the H’(‘Ph)-norm of the approximation error with degrees of 
freedom for two orders h of the stabilization and norm parameters (2D computations). 

For p = 3, the observed experimental convergence rate is optimal. The results for the evenorder 
approximations again remain suboptimal and these rates appear to be insensitive to the change in 
order of the stabilization term. Tests in which we changed the order of the stabilization parameter 
to O(h2) and O(h3) were performed but are not presented here as there was no noticeable change 
in the results. 

6. CONCLUDING REMARKS 

In this work, a new DG formulation is presented and analyzed for the case of a two-dimensional 
reaction-diffusion problem with Dirichlet boundary conditions. The method is similar to the DGM 
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Figure 7. Variation of the L2(n)- norm of the approximation error with degrees of 
freedom for two orders h of the stabilization and norm parameters (2D computations). 

of [l], but involves an extra stabilization term on the jumps of the fluxes across the element 
interfaces. 

Also, new in this approach is the unconventional choice for our space of test functions. Instead 
of choosing the conventional H’(Ph), h’ h ’ p d w rc is re ominantly used in discontinuous Galerkin 
methods, we relax the constrains on the space and choose functions that are locally in H(& K) 
and whose jumps in the fluxes across the element interfaces are in L2(I’int). We summarize the 
results and conclusions of our approach as follows. 

WELL POSEDNESS OF THE FORMULATION. We proved that the solution to the strong form of 
the PDE (1) is a solution to the discontinuous weak form (6) as well. Continuity and Inf-Sup 
properties of the corresponding variational forms are established as well as the existence of unique, 
stable solutions to the established DGM. 
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Figure 7. (cont.) 

A Priori ERROR ESTIMATES. A priori estimates of the approximation error are derived that 
show that if the stabilization term is of order O(h/p2), optimal h convergence rates and subop- 
timal p convergence rates are obtained in the H’(P h norm for p 2 2. The highest suboptimal ) 
p convergence rate we can prove is of order r - 2. It is noteworthy that h convergence for the 
case where p = 1 is proven. The corresponding convergence rate is suboptimal of order l/2, but 
we prove that the method does indeed converge. 

NUMERICAL CONVERGENCE TESTS. The one- and two-dimensional numerical convergence tests 
performed in this paper, confirm the stabilizing effect of a stabilization term of order O(h). Over- 
all, the observed convergence rates are higher or equal to the rates predicted by the error analysis 
performed in Section 4. Furthermore, the convergence rates in L2(s2) still remain suboptimal of 
order p for even-order approximations and optimal of order p + 1 for odd-order approximations 
(with the exception of the csse where p = 1). This behavior was also observed for the DGM of 
Oden, Babuska and Baumann [l]. 

COMPARISON OF THE STABILIZED DGM WITH OTHER DGMs. If we compare our stabilized 
DGM (SDGM) with the DGM of [l] and the NIPG methods of [8,19] and [20,21], it is observed 
that only the SDGM is shown to be well posed. Next, the Inf-Sup condition is proved for the 
DGM on the space V, IjI.Ill, th us g uaranteeing stability of the exact solution with respect to the 
data. To date, stability of the DGM version of Oden, Babuska and Baumann and the NIPG has 
not been proved. 

In addition, compared to the DGM of Oden, Baburjka and Baumann, the SDGM is proved to 
converge for linear approximations. Numerical experiments had shown that the DGM converges 
for p = 1, but no theoretical work has been advanced to confirm these observations until the 
present work. 

Finally, an attractive feature of SDGM over NIPG is that the former satisfies a local conser- 
vation property that the latter does not. 
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