14 research outputs found

    Soliton structures in Bose-Einstein condensates

    Get PDF
    The generation of dark solitons in Bose-Einstein condensates has been an area of interest since the first experimental condensates were produced. The ubiquity of solitons in the natural world makes them an important phenomenon to understand. Despite excellent theoretical work in two dimensional dark solitons, few experiments have had the opportunity to investigate this regime. The work presented investigates the generation of dark solitons in a Rb-87 Bose-Einstein condensate. The evolution and decay of these topological excitations are investigated. The decay of the dark solitons is found to vary with the phase-step used to generate them. Dark solitons created with a phase-step width of 0.60 ±0.15 μm are found to decay into vortices after 10 ms. Dark solitons generated with larger phase-steps are found not to exhibit this vortex decay, instead dissipating over 10-15 ms back into the condensate. The first experimental generation of two dimensional Jones-Roberts solitons is reported in this work. These dark solitons differ from the standard planar dark soliton in that they are finite in extent and are found to be more dynamically stable. The Jones-Roberts solitons are observed for 40 ms with no observed change in energy

    Observation of Stable Jones-Roberts Solitons in Bose-Einstein Condensates

    Get PDF
    We experimentally generate two-dimensional Jones-Roberts solitons in a three-dimensional atomic Bose-Einstein condensate by imprinting a triangular phase pattern. By monitoring their dynamics we observe that this kind of solitary waves are resistant to both dynamic (snaking) and thermodynamic instabilities, that usually are known to strongly limit the lifetime of dark plane solitons in dimensions higher than one. We additionally find signatures of a possible dipole-like interaction between them. Our results confirm that Jones-Roberts solitons are stable solutions of the non-linear Schr\"odinger equation in higher dimensions and promote these excitations for applications beyond matter wave physics, like energy and information transport in noisy and inhomogeneous environments

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Jones-Roberts solitons: rarefaction pulses

    No full text
    Dataset to support the article: Meyer, N. et.al. Jones-Roberts solitons defeating the snaking instability Submitted to Nature Physics, March 2016 Jones Roberts solitons - rarefaction pulses. Dynamics of rarefaction pulses after triangular imprint

    Jones_Roberts_solitons

    No full text
    Jones Roberts solitons - rarefaction pulses Dynamics of rarefaction pulses after triangular imprin

    Jones_Roberts_solitons

    No full text
    Jones Roberts solitons - rarefaction pulses Dynamics of rarefaction pulses after triangular imprin

    Nerve and epidermal growth factor induce protein synthesis and eIF2B activation in PC12 cells

    No full text
    The regulation of protein synthesis and of eukaryotic initiation factor eIF2B was studied in PC12 cells. An increase in protein synthesis was observed after nerve growth factor (NGF) and epidermal growth a factor (EGF) treatment of PC12 cells, and this increase coincided with activation of eIF2B. Growth factor addition in the presence of the phosphatidylinositol-3'-OH kinase inhibitor wortmannin showed that both NGF- and EGF-induced protein synthesis and eIF2B activation were phosphatidylinasitol-3'-OH kinase dependent. The EGF-induced stimulation of protein synthesis and activation of eIF2B was dependent upon FK506-binding protein-rapamycin-associated protein, as shown with the immunosuppressant rapamycin, whereas NGF induction was partially dependent upon FK506-bindinag protein-rapamycin-associated protein. The activities of two kinases that act on eIF2B, glycogen synthase kinase-3 and casein kinase II, were measured to assess their potential roles in the activation of eIF2B in PC12 cells. inactivation of glycogen synthase kinase-3 was seen in response to both NGF and EGF and this coincided with activation of eIF2B. However, inactivation of glycogen synthase kinase-3 was not rapamycin sensitive, in contrast to the activation of eIF2B. This indicates the involvement of another protein kinase or regulatory mechanism in the eIF2B activation. Both growth factors activated casein kinase II. However, the time course of its activation and its insensitivity to wortmannin and rapamycin suggest that casein kinase II does not play a major regulatory role in eIF2B activation under these conditions

    Observation of two-dimensional localised Jones-Roberts solitons in Bose Einstein condensates

    Get PDF
    Jones-Roberts solitons are the only known class of stable dark solitonic solutions of the non-linear Schr\"odinger equation in two and three dimensions. They feature a distinctive elongated elliptical shape that allows them to travel without change of form. By imprinting a triangular phase pattern, we experimentally generate two-dimensional Jones-Roberts solitons in a three-dimensional atomic Bose-Einstein condensate. We monitor their dynamics observing that this kind of solitons is indeed not affected by dynamic (snaking) or thermodynamic instabilities, that instead make other classes of dark solitons unstable in dimensions higher than one. We additionally find signatures of a possible dipole-like interaction between them. Our results confirm the prediction that Jones-Roberts solitons are stable solutions of the non-linear Schr\"odinger equation and promote them for applications beyond matter wave physics, like energy and information transport in noisy and inhomogeneous environments
    corecore