608 research outputs found

    Milk of calcium renal disease

    Get PDF
    No Abstract

    Aerosol measurements over the Pacific Ocean in support of the IR aerosol backscatter program

    Get PDF
    The major efforts under NASA contract NAG8-841 included: (1) final analyses of the samples collected during the first GLOBE survey flight that occurred in November 1989 and collections and analysis of aerosol samples during the second GLOBE survey flight in May and June 1990. During the first GLOBE survey flight, daily samples were collected at four stations (Midway, Rarotonga, American Samoa, and Norfolk Island) throughout the month of November 1989. Weekly samples were collected at Shemya, Alaska, and at Karamea, New Zealand. During the second GLOBE survey flight, daily samples were collected at Midway, Oahu, American Samoa, Rarotonga, and Norfolk Island; weekly samples were collected at Shemya. These samples were all analyzed for sodium (sea-salt), chloride, nitrate, sulfate, and methanesulfonate at the University of Miami and for aluminum at the University of Rhode Island (under a subcontract). (2) Samples continued to be collected on a weekly basis at all stations during the periods between and after the survey flights. These weekly samples were also analyzed at the University of Miami for the suite of water-soluble species. (3) In August 1990, the results obtained from the above studies were submitted to the appropriate personnel at NASA Marshall Space Flight Center to become part of the GLOBE data base for comparison with data from instruments used aboard the aircraft. In addition, the data will be compared with data previously obtained at these stations as part of the Sea-Air Exchange (SEAREX) Program. This comparison will provide valuable information on the representativeness of the periods in terms of the longer term aerosol climatology over the Pacific Ocean. (4) Several publications have been written using data from this grant. The data will continue to be used in the future as part of a continuing investigation of the long-term trends and interannual variations in aerosol species concentrations over the Pacific Ocean

    What controls the recent changes in African mineral dust aerosol across the Atlantic?

    Get PDF
    Dust from Africa strongly perturbs the radiative balance over the Atlantic, with emissions that are highly variable from year to year. We show that the aerosol optical depth (AOD) of dust over the mid-Atlantic observed by the AVHRR satellite has decreased by approximately 10% per decade from 1982 to 2008. This downward trend persists through both winter and summer close to source and is also observed in dust surface concentration measurements downwind in Barbados during summer. The GEOS-Chem model, driven with MERRA re-analysis meteorology and using a new dust source activation scheme, reproduces the observed trend and is used to quantify the factors contributing to this trend and the observed variability from 1982 to 2008. We find that changes in dustiness over the east mid-Atlantic are almost entirely mediated by a reduction in surface winds over dust source regions in Africa and are not directly linked with changes in land use or vegetation cover. The global mean all-sky direct radiative effect (DRE) of African dust is −0.18 Wm−2 at top of atmosphere, accounting for 46% of the global dust total, with a regional DRE of −7.4 ± 1.5 Wm−2 at the surface of the mid-Atlantic, varying by over 6.0 Wm−2 from year to year, with a trend of +1.3 Wm−2 per decade. These large interannual changes and the downward trend highlight the importance of climate feedbacks on natural aerosol abundance. Our analysis of the CMIP5 models suggests that the decreases in the indirect anthropogenic aerosol forcing over the North Atlantic in recent decades may be responsible for the observed climate response in African dust, indicating a potential amplification of anthropogenic aerosol radiative impacts in the Atlantic via natural mineral dust aerosol.Massachusetts Institute of Technology (Charles E. Reed Faculty Initiative Fund)National Science Foundation (U.S.) (AGS-1238109)National Science Foundation (U.S.) (AGS- 0962256)National Science Foundation (U.S.) (NASA NNX12AP45G

    Comparisons of trace constituents from ground stations and the DC-8 aircraft during PEM-West B

    Get PDF
    Chemical data from ground stations in Asia and the North Pacific are compared with data from the DC-8 aircraft collected during the Pacific Exploratory Measurements in the Western Pacific Ocean (PEM-West B) mission. Ground station sampling took place on Hong Kong, Taiwan, Okinawa, and Cheju; and at three Pacific islands, Shemya, Midway, and Oahu. Aircraft samples were collected during 19 flights, most over the western North Pacific. Aluminum was used as an indicator of mineral aerosol, and even though the aircraft did sample Asian dust, strong dust storms were not encountered. The frequency distribution for non-sea-salt sulfate (nss SO4=) in the aircraft samples was bimodal: the higher concentration mode (∼1 μg m−3) evidently originated from pollution or, less likely, from volcanic sources, while the lower mode, with a peak at 0.040 μg m−3, probably was a product of biogenic emissions. In addition, the concentrations of aerosol sulfate varied strongly in the vertical: arithmetic mean SO4=concentrations above 5000 m ( = 0.21±0.69 μg m−3) were substantially lower than those below ( = 1.07±0.87 μg m−3), suggesting the predominance of the surface sources. Several samples collected in the stratosphere exhibited elevated SO4=, however, probably as a result of emissions from Mount Pinatubo. During some boundary layer legs on the DC-8, the concentrations of CO and O3 were comparable to those of clean marine air, but during other legs, several chemically distinct air masses were sampled, including polluted air in which O3was photochemically produced. In general, the continental outflow sampled from the aircraft was substantially diluted with respect to what was observed at the ground stations. Higher concentrations of aerosol species, O3, and CO at the Hong Kong ground station relative to the aircraft suggest that much of the continental outflow from southeastern Asia occurs in the lower troposphere, and extensive long-range transport out of this part of Asia is not expected. In comparison, materials emitted farther to the north apparently are more susceptible to long-range transport

    Modeling sea-salt aerosols in the atmosphere: 2. Atmospheric concentrations and fluxes

    Get PDF
    Atmospheric sea-salt aerosol concentrations are studied using both long-term observations and model simulations of Na+ at seven stations around the globe. Good agreement is achieved between observations and model predictions in the northern hemisphere. A stronger seasonal variation occurs in the high-latitude North Atlantic than in regions close to the equator and in high-latitude southern hemisphere. Generally, concentrations are higher for both boreal and austral winters. With the model, the production flux and removal flux at the atmosphere-ocean interface was calculated and used to estimate the global sea-salt budget. The flux also shows seasonal variation similar to that of sea-salt concentration. Depending on the geographic location, the model predicts that dry deposition accounts for 60–70% of the total sea-salt removed from the atmosphere while in-cloud and below-cloud precipitation scavenging accounts for about 1% and 28–39% of the remainder, respectively. The total amount of sea-salt aerosols emitted from the world oceans to the atmosphere is estimated to be in the vicinity of 1.17×1016 g yr−1. Approximately 99% of the sea-salt aerosol mass generated by wind falls back to the sea with about 1–2% remaining in the atmosphere to be exported from the original grid square (300×300 km). Only a small portion of that exported (∼4%) is associated with submicron particles that are likely to undergo long-range transport

    Stabilization of Charged Polysaccharide Film Forming Solution by Sodium Chloride: Nanoparticle Z-Average and Zeta-Potential Monitoring

    Get PDF
    Different natural biopolymers are becoming the issue of an expanding number of studies reporting their potential applications in food, pharmaceutical and cosmetic technologies, as well as in tissues engineering . In this respect, the utilization of charged polysaccharides like chitosan (CH) or pectin (PEC) appears to be one of the most interesting way in manufacturing of biodegradable new materials

    Twitter journal clubs and continuing professional development: An analysis of a #MedRadJClub tweet chat

    Get PDF
    Introduction Online Twitter journal clubs are a recent and popular innovation with the potential to increase research awareness and inform practice. The medical radiation sciences' MedRadJournalClub (MJRC) is a Twitter-based event that attracts a global group of participants at the monthly chats. An analysis of a recent MedRadJournalClub discussion evaluated the perceived benefits and limitations of medical radiation practitioners participating in an online journal club. Methods The February 2017 chat used for analysis was based on the Journal of Medical Imaging and Radiation Sciences article by Currie et al. “Twitter Journal Club in Medical Radiation Science” that examines the educational theory behind learning and evidencing professional development through MRJC and social media. The data consisted of chat tweets which were collated using the Twitter advanced search function using the #medradjclub. An initial reviewed was performed to exclude irrelevant content. A second review was then undertaken to categorize the main theme of the tweet. The data were then subjected to thematic analysis which yielded seven different categories. Results The main benefits included global access due to the online nature of MRJC that has facilitated networking and collaboration. Open access to recently published research was another key benefit. The character limitation of a tweet was the most common constraint, and the dynamic nature of the twitter conversation requires multi-tasking that may be difficult. Conclusion Our analysis indicated that participants use MedRadJournalClub as a source of continuing professional development with some evidence that this is directly informing clinical and educational practice

    A roadmap to engaging patients in research: The experience of a large academic research hospital in Canada

    Get PDF
    Recent definitions of patient engagement in research (PER) emphasize that engagement should be meaningful, active and an equal collaboration across the research continuum. The increased interest in patient engagement is predicated on the recognition by researchers of the unique experiential knowledge provided by individuals with lived experience, ethical obligations to democratize science and that patient involvement can potentially lead to improved outcomes for patients and researchers. Sunnybrook Health Sciences Center is a large academic research hospital in Toronto, Canada which aimed to create clearer pathways for patients to have a more prominent voice in the development, implementation, and dissemination of research. However, to ensure that the policies, practices and resources to support PER would be viewed as meaningful to all stakeholders (including, but not limited to, administrators, clinicians, clinician researchers, scientists, patients, family members and caregivers), a series of structured activities were undertaken to foster collective buy-in and co-create an operational implementation plan for PER. The activities consisted of a consecutive mixed methods approach of three phases of discovery: a survey, focus groups and interviews, and an in-person town hall. We describe our approach to implementation and operationalization of PER at an academic hospital based on five identified priority themes: education and training, partnerships, matching programs, policies and measures. Experience Framework This article is associated with the Patient, Family & Community Engagement lens of The Beryl Institute Experience Framework (https://www.theberylinstitute.org/ExperienceFramework). Access other PXJ articles related to this lens. Access other resources related to this lens
    corecore