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ABSTRACT

The major efforts under NASA contract NAG8-841 included:

Final analyses of the samples collected during the first GLOBE Survey Flight that occurred in
November 1989 and collections and analysis of aerosol samples during the second GLOBE survay
flight in May and June 1990. During the first GLOBE Survey Flight, daily samples were collected
at four stations (Midway, Rarotonga, American Samoa, and Norfolk Island) throughout the month
of November 1989. Weekly samples were collected at Shemya, Alaska, and at Karamea, New
Zealand. During the second GLOBE Survey flight, daily samples were collected at Midway,
Oahu, American Samoa, Rarotonga and Norfolk Island; weekly samples were collected at
Shemya. These samples were all analyzed for sodium (sea-salt), chloride, nitrate, sulfate and
methanesulfonate at the University of Miami and for aluminum at the University of Rhode Island
(under a subcontract).

Samples continued to be collected on a weekly basis at all stations during the periods between and
after the survey flights. These weekly samples were also analyzed at the University of Miami for
the suite of water-soluble species. Aerosol measurements in support of the second GLOBE Survey
Flight.

In August 1990, the results obtained from the above studies were submitted to the appropriate
personnel at NASA Marshall Space Flight Center to become part of the GLOBE data base for
comparison with data from instruments used aboard the aircraft. In addition, the data will be
compared with data previously obtained at these stations as part of the Sea-Air Exchange
(SEAREX) Program. This comparison will provide valuable information on the representativeness
of the periods in terms of the longer term aerosol climatology over the Pacific Ocean.

Several publications have been written using data from this grant. The data will continue to be
used in the future as part of a continuing investigation of the long-term trends and inter-annual
variations in aerosol species concentrations over the Pacific Ocean.



INTRODUCTION

On a conceptual basis, it should be possible to measure the global wind field by means of a
Doppler lidar system mounted on a space platform. The concept is dependent on the presence of
aerosol particles in the atmosphere. By measuring the Doppler-shifted return from these particles, the
velocity of the air parcel containing the particles can be retrieved. Orbiting wind sounding systems are
planned for the shuttle in the early 1990's (Shuttle Coherent Atmospheric Lidar Experiment - SCALE)
and for a satellite Doppler Lidar Atmospheric Wind Sounder - LAWS) in the mid 1990's. Because a
knowledge of the global wind field could greatly enhance the reliability of weather analysis and
forecasting, the National Oceanic and Atmospheric Administration (NOAA) considers such a system to
be a major priority.

Because of the substantial cost involved in the space deployment of such a system, there must be
some assurance that a reasonable backscatter return will be obtained for extended periods of time over
a sufficiently large region of the troposphere. The magnitude of the return strongly depends on the
concentration, composition, and physical properties of the aerosol. Hence, an assessment of the
feasibility of the lidar system requires substantial knowledge of the temporal, areal, and vertical
distribution of these aerosol properties on a global scale.

In view of the requirement for the feasibility assessment, the goal of the present research was to
evaluate the concentrations of soil dust in the boundary layer over the Pacific Ocean. Soil dust
concentrations over the ocean are important for two major reasons. First, the properties of soil dust are
such that, at the proposed CO, wavelengths, the backscatter is more sensitive to soil dust than to any of
the other types of aerosols which are expected to be present. Seasalt concentrations in the marine
boundary layer should always be high enough to provide a reasonable backscatter; in contrast, the
concentrations in the free troposphere are extremely low. Secondly, with no local sources, the dust
concentrations at the surface over the open ocean are expected to reflect those over a substantial depth
of the troposphere. Because the long-range transport of soil dust occurs primarily in the free
troposphere, the concentrations in the boundary layer represent the dust which has settled or been
downmixed through the marine inversion. Hence, the dust concentrations in the free troposphere are
likely to be comparable to or greater than those in the boundary layer where the measurements have
actually been made.

Other aerosols may also contribute to the overall backscatter. Of potential major importance is
nonsea-salt (nss) SO; which has both natural and anthropogenic sources. Natural nss-SO; over the
ocean is derived from the oxidation of dimethylsulfide which is produce by biogenic activity in the
ocean and then emitted to the atmosphere where it is oxidized to SO, and methanesulfonate (MSA).
This process is the overwhelmingly dominant source of MSA and hence MSA can serve as a tracer for
the impact from this source. The vast majority of the biogenic nss-SO;" will occur only in the marine
boundary layer. The anthropogenic nss-SO; can be estimated from the total nss-SO; minus the
biogenic component. The anthropogenic component, like dust, is derived from continental sources and
hence may occur in higher concentrations in the free troposphere where the major long-range transport
occurs.

Under NASA grant measurements were made at seven surface sites on islands in the Pacific Ocean
Figure 1. Daily samples were collected at Midway, Rarotonga, American Samoa, and Norfolk Island
during the first GLOBE flight which lasted throughout the month of November 1989. Weekly samples
were collected at Shemya, Alaska, and at Karamea, New Zealand. During the second GLOBE Survey
flight (May-June 1990), daily samples were collected at Midway, Oahu, American Samoa, Rarotonga
and Norfolk Island. Prior to this study, no daily samles had been collected at any of these Pacific
stations. These samples were all analyzed for sodium (sea-salt), chloride, nitrate, sulfate and
methanesulfonate at the University of Miami and for aluminum at the University of Rhode Island.



SAMPLING AND ANALYSIS

The aerosol samples are collected by drawing air through 20x25 cm Whatman-41 filters at a flow
rate of about 1.1 m® min™'. Actual flow rates, at the beginning and the end of a sampling period, were
determined from the pressure drops across calibrated orifice plates [Savoie and Prospero, 1977, 1980].
The filters were nominally changed once a week except during the periods of the intensive GLOBE
Survey Flights. To minimize contamination from local sources, the sampling pumps were controlled
by wind sensors and operated only when the wind was from the ocean at speeds greater than about 1
ms”’. Actual operating periods were obtained from elapsed time meters.

Quarter sections of the filters were extracted in 20 mL of Milli-Q water. The concentrations of
sulfate, nitrate, and MSA in the extraction solutions were determined to within +5% by ion
chromatography and that of sodium was determined to within +2% by atomic absorption spectroscopy
[Saltzman et al., 1983, 1986a; Savoie et al., 1987]. The nss sulfate concentrations were calculated by
subtracting 0.2517 times the sodium concentration from the total sulfate concentration. Ammonium
was detrmined to within +5% using automated colorimetry.

Soil dust concentrations are estimated from the measured concentrations of aluminum which
comprises about 8% of the mass of the soil aerosols [Uematsu et al., 1983; Schiitz and Rahn, 1982;
Glaccum, 1978]. The aluminum concentration is determined by instrumental neutron activation
analysis with an uncertainty of less than 15% [Uematsu et al., 1983]. The detection limit for aluminum
is inversely proportional to the total volume of air filtered for a given sample and directly proportional
to the standard deviation of the filter blank. Based on twice the standard deviation of the filter blank
(15 pg-Al/filter) and typical sample volumes ranging from 5000 to 10000 m®> STP, the detection limit
ranges between 0.003 and 0.0015 pg-Al m”. These values convert to detection limits of about 0.04
and 0.02 pg m™ for soil dust.

Data from samples for which the actual sampling time was less than 10% of the total time the filter
was exposed are not considered in this report. With small sampling/exposure ratios, there is much
greater potential for significant contamination by locally-derived particulates; any deposition during
periods of out-of-sector winds could produce large artifacts.  Furthermore, unacceptably large
analytical uncertainties often arise as a consequence of the small quantities of material collected during
the short sampling periods.

The results from studies using dual in-line Whatman-41 filters with a 1 cm separation distance
indicate that these filters have total mass collection efficiencies greater than 90% for nss sulfate and
MSA, 95% for nitrate and sea salt [Savoie, 1984], and 99% for mineral aerosol (M. Uematsu,
University of Rhode Island, personal communication, 1988). These results are consistent with those
obtained by Watts et al. [1987] and Lowenthal and Rahn [1987] for high volume bulk aerosol samples.
Although similar efficiencies were reported by Kitto et al. [1988], they presented no details of their
sampling conditions or environment.

STATION INFORMATION

Each of the sampling stations has its own set of idiosyncrasies which affect the data set in one
manner or another. These idiosyncrasies are discussed briefly below. The discussion begins with the
most northerly station, Shemya, and continues with the consecutively more southerly stations.

Shemya (52°44'N, 174°06'E). The sampler is located on the south shore of the island and 2 m
above the ground. Sampling began on May 20, 1981 and is still in progress. Because of the often
horrendous weather conditions (strong winds and cold temperatures) and several additional problems
including maintenance, there were lengthy periods when the station was not operable. Hence, there are
fewer data from this station than from many of the others in the North Pacific.



Midway (28°13'N, 177°21'W). The station at Midway is located on the eastern shore of the
island. Originally, the filter head was located on the roof of the NOAA (National Oceanic and
Atmospheric Administration) tide shack. A sampling tower was installed near the same site in
November 1985. Operations at this station have generally run smoothly and fairly continuously and
have provided high quality data.

Oahu (21°20'N, 157°42'W). At Oahu, the sampler is located on a 20-m tower on the
northeastern shoreline at Bellows Air Force Base. As with that at Midway, the station at Oahu has
generally run smoothly and fairly continuously and has provided high quality data.

American Samoa (14°15'S, 170°35'W). The collection system on American Samoa was set up on
the tower at the NOAA (National Oceanic and Atmospheric Administration) GMCC (Geophysical
Monitoring for Climatic Change) site near Cape Matatula. Operation of this site began on 19 March
1983 and still continues. The sampler was originally on the top on a 6-m tower located on a sheer
30-m cliff; on 2 May 1985, the tower height was increased to 16-m. The probability of local
contamination at this site is extremely low and, as will be discussed later, the mineral dust
concentrations at this station are among the lowest ever measured in the marine boundary layer.

Rarotonga (21°15'S, 159°45'W). The site on Rarotonga, Cook Islands, was originally on a three
meter high, wooden platform at the edge of the beach on the east coast. The seasalt concentrations at
this site were extremely high; consequently, the surf-produced aerosols may significantly have affected
the mineral dust concentrations. Funds from our NASA GLOBE contracts were used to erect a 15-m
fold-over tower at the site to reduce such problems.

Norfolk Island (29°05'S, 167°59'E). The Norfolk Island site is located on a 100 meter high cliff
on the southwest coast. Funds from our NASA GLOBE contracts were used to erect a 15-m fold-over
tower at this station as well.

Karamea, New Zealand (41°15°S, 172°07’E). The Karamea site was located about 200 meters
from the beach. A major problem with this site was the katabatic flow associated with the mountains
which comprise much of the central area of the South Island; contamination by soil material from the
island itself could be significant.

RESULTS

SUMMARY OF RESULTS DURING THE GLOBE FLIGHTS

The results obtained at each station during the periods of the two GLOBE flights are summarized
in Tables 1 and 2. The results for the individual daily samples that were collected during each of the
GLOBE flights are illustrated in Figures 2 through 6.

The average concentrations during each of the GLOBE flights continue to illustrate the spatial and
temporal variations that were evident from data previously obtained as part of the SEAREX program
(e.g. Prospero et al., 1985, 1989; Savoie et al., 1989). In particular, the mineral dust concentrations
are by far the lowest in the tropical South Pacxﬁc at American Samoa and Rarotonga where the
concentrations average between 10 and 30 ng m>. At these sites, the dust concentrations are frequently
so low that they are within the uncertainties of the measurements. Prior to the installation of the tower
on Rarotonga, the dust concentrations measured at this site were much higher than those at Samoa. It
was speculated that this was due to the high concentrations of sea-salt that were sampled near the surf-
zone and the impact of sediments that might be concurrently ejected into the atmosphere. The results
from the GLOBE data sets suggest that this speculation was valid and that the mineral dust
concentrations over the remote tropical South Pacific are generally among the lowest that have been
measured anywhere in the marine boundary layer.

Apart from Karamea where katabatic flow from the mountains apparently caused locally high dust
concentrations, the highest dust concentrations were measured at Midway Island during the second
GLOBE flight. This was expected on the basis of the SEAREX results. Transport from Asia has a



substantial impact on dust concentrations over the North Pacific during the late winter and spring. Dust
concentrations at Midway during Novermber 1989 (N89) were about 4 times lower than those during
May-June 1990 (MJ90) but still about an order of magnitude higher than those in the tropical South
Pacific. The MJ90-N89 contrast is considerably less at Shemya where the spring mean is only about
20% higher. The Asian influence at Oahu is considerably less than that at Midway; dust concentrations
during MJ90 are nearly a factor of three lower at Oahu. At Norfolk Island, dust transport from
Australia occurs principally during the austral summer. Note that the mean dust concentration at
Norfolk during MJ90 is nearly as low as those at Samoa and Rarotonga but about an order of
magnitude higher during N&9.

Generally speaking, the trends in NOj3, nss-SO;", and NH, tend to follow patterns that are similar
to those of mineral dust. This suggests that a significant fraction of each of these species is derived
from continental sources, probably but not necessarily anthropogenic. For example the highest mean
NO; concentration occurs at Midway during MJ90 as do the highest nss-SO; and NH;™ concentrations.

The concurrent transport of many of these from cntinental sources is better illustrated in the
figures (Fig. 2-6) which illustrate the very large day-to-day variations in the concentrations of most of
the species at each of the locations and also provide an easy visual comparison of the N89 and MJ90
data sets. During both flight periods at Midway, peaks generally occur concurrently in mineral dust,
NO;3, and nss-SO;". Such concurrences were noted previously by Prospero et al. [1985]. A significant
insight that is provided by the daily data is that the NO3/nss-SOy ratios vary considerably during even
single events and the specific timing of their peaks may not be coincident. Note for example the
differences between the large broad NO; peak near the middle of MJ90 and the more spike peak that
occurs with nss-SO; and NH, . Note also the relative heights of the two broad peaks in mineral dust,
NO;3, and nss-SO, during MJ90. The mean dust concentration is about a factor of 5 lower in the
second peak whereas the NO;3 and nss-SO; means are only about 20-40% lower. Similar features can
be found in the MJ90 Oahu data. Hence, while it is undoubtedly true that much of the NO; and nss-
SO, that is measured over the North Pacific during the spring is associated in a meteorlogical way with
the transport of dust from Asia, the ultimate source of the ionic species is unlikely to be the dust itself
but rather Asian pollution.

The daily plots of the data also illustrate that while the concentrations of dust over the North
Pacific are on the average much higher during the spring, there are still periods when the dust
concentrations are quite low. Hence one should expect that the backscatter in the free troposphere over
the North Pacific, even during the spring peak of Asian dust transport, may at times decrease to
“background” levels that are more typical of those over the tropical South Pacific.

IMPACT OF BIOGENIC NONSEA-SALT SULFATE

The separation of nss-SO; into its two components, biogenic and anthropogenic, is of major
importance. Anthropogenic nss-SOy is likely to have been transported through the free troposphere to
the remote marine areas. While in the free troposphere, it may, in many areas, contribute significantly
to the total backscatter that is important for the LAWS system. Biogenic nss-SO;4, in contrast, is
largely produced within and confined to the marine boundary layer.

In order to estimate the absolute and/or relative contributions of the marine and continental sources
to the total nss-SO; concentration, we need an independent estimate of the amount of nss-SO; derived
from at least one of these two sources. MSA has frequently been used as a tracer for the marine
biogenic component because its sole source over the ocean is believed to be the oxidation of DMS;
other potential precursors, e.g. CH;SH and CH;SSCH;, do not contribute significantly over the open
ocean [Bates et al., 1992]. However, there has been some concern that the nss-SO; /MSA ratio derived
from the oxidation of DMS may vary significantly both from one location to another and as a function
of time at a given location. It is well known, for example, that the ratio is considerably lower in high



latitude regions than in the tropics [e.g., Ayers et al., 1991; Saltzman et al., 1985; Savoie et al., 1992,
1993]. Hence it has been deemed necessary to assess the potential variations in this ratio as rigorously
as possible. These assessments require a substantial data base of concurrent measurements of MSA and
nss-SO;, and few such data sets have been available.

The best locations to assess the nss-SO; /MSA ratio that is derived from DMS are those in regions
that are minimally impacted by continentally-derived material either anthropogenic or natural.
American Samoa appears to be one such location. Bulk sampling for chemical analysis of atmospheric
particles was established in 1983 as part of the SEAREX (Sea/Air Exchange Program) network [Riley
et al., 1989]. Our data record starts in March 1983 and continues to the present [Savoie et al., 1989].
The mean concentration of 2'°Pb (0.056 mBq m'3; Turekian et al., 1989) at Samoa is among the lowest
reported for temperate and tropical ocean regions. The only lower mean *°Pb concentration (0.042
mBq m) that was found during SEAREX (Sea/Air Exchange Program) was at Funafuti, Tuvalu, which
lies in the same general wind regime. These values are comparable to those over Antarctica [Savoie et
al., 1992]. Al and Sb concentrations at Samoa are among the lowest reported for tropospheric aerosols
[Arimoto et al., 1989; Prospero et al., 1989], and concentrations of Pb at Samoa are about an order of
magnitude lower than those in the North Pacific westerlies [Maring et al., 1989; Rosman et al., 1990].
Concentrations of bulk carbonaceous aerosol are also persistently low at Samoa and isotopic data
suggest that natural biogenic emissions are the dominant source [Buat-Ménard et al., 1989; Cachier et
al., 1986]. Consequently, the nss-SO; at Samoa is believed to be derived almost exclusively from the
oxidation of natural sulfur gases emitted from the ocean.

The MSA/nss-SO; ratios at American Samoa during and apart from the GLOBE flights were
discussed in detail by Savoie et al. [1994]. A brief overview is presented here. As shown in Figure 7,
the trends in the nss-SO;" concentrations consistently follow those of MSA during both of the GLOBE
flight periods. The trends also match those of total aerosol scattering at 550 nm and the condensation
nuclei as measured by the CMDL personnel at Samoa. These trends differ markedly from those of
NO; and O, that are shown in Figure 8. The latter difference provides evidence that the agreement
among the other trends is not driven simply by common washout or other meteorological trends. If that
were the case, NOj would be expected to exhibit a trend similar to the sulfur aerosols.

In Figure 9, we show the a scatterplot of the weekly-averaged data from all of the Samoa samples
that have been analyzed for both MSA and nss-SO;". The plot indicates that the nss-SO; concentration
is directly related to that of MSA. A zero intercept implies that there is no additional significant source
for nss-SO;. Consequently, the best estimate of the relative amounts of the two species that are
derived from the oxidation of DMS is given by the geometric mean, nss-SO;/MSA = 18.1+0.9
(where + indicates the 95% confidence limits of the geometric mean.

A scatterplot of the daily data collected during the GLOBE flights is shown in Figure 10. The line
in the figure indicates an MSA/nss-SOJ ratio of 0.055 which is equivalent to an nss-SO,; /MSA ratio of
18.1, i.e. the same as indicated above. With the daily samples, there appears to be significant
differences between the MSA/nss-SO; ratios in the N89 and MJ90 data sets. However, the results of a
detailed error analysis [Savoie et al., 1994] clearly shows that in neither case does the data set differ
significantly from the previously noted geometric mean; the variations from the overall mean are all
consistent with the overall uncertainties in the data points themselves.

The scatterplot of MSA versus nss-SO;* concentrations at Midway during the two GLOBE flight
periods is shown in Figure 11 along with a line showing the mean ratio at American Samoa. Notably,
the upper tendency of the points is very close to and, in fact, does not deviate significantly from the
mean at Samoa. However, during much of the first GLOBE flight, the nss-SOZ concentrations are far
in excess of that which would be expected from DMS oxidation alone as judged by the concentration of
MSA. The excessive levels of nss-SO; relative to MSA are indicative of periods with significant
contributions of anthropogenic nss-SO;". On the basis of the mean ratio at Samoa, DMS oxidation



accounted for about 38% (0.233 pg m’3) of the total mean (0.605 pg m'3) nss-8SO, concentrations
during the N89 GLOBE flight. During the MJ90 GLOBE flight, DMS oxidation is estimated to
account for 96% (0.96 ng m™) of the total mean (1.002 pg m'3) nss-SO;". Hence it appears that the
much higher concentration of nss-SO;" during the late spring (compared to November) is a consequence
of higher biological production of DMS rather than a larger contribution from anthropogenic sources in
Asia. At Oahu, during MJ90 (GLOBE 2) (Figure 12), the biogenic contribution to the total nss-SO; is
about 93%. While the percentage at Oahu is similar to that at Midway during MJ90, the concentrations
of both MSA and nss-SO;" are about 40% lower. Hence during the spring Midway experiences much
higher concentrations of both biogenic nss-SO;" and Asian dust than does Oahu.

The scatterplot of MSA versus nss-SO; at Norfolk Island for the two GLOBE flight periods is
shown in Figure 13. The results at Norfolk testify to the non-universality of the biogenic MSA/nss-
SO ratio. While the ratio is very consistent over large regions of the tropical and subtropical oceans,
the ratio appears to be significantly larger at higher latitudes. The variation at higher latitudes makes it
difficult to accurately estimate the relative contributions of nss-SO, from the two primary sources
without another, and more well-behaved, tracer for one of the two sources. Even during summer, the
MSA/nss-SO; ratios at Norfolk appear to be much high than those in the tropics.

SEASONAL CYCLES

The seasonal cycles in the concentrations of the various aerosol species at each of the seven sites
used for GLOBE are summarized in Tables 3 through 9 and Figures 14 through 20. Over the northern
hemisphere, the seasonal cycles in mineral dust (as indicated by aluminum) are dominated by the
transport of dust from Asia with major peaks occurring in the late winter and spring. The variations
during the remainder of the year are extremely location dependent. A secondary peak, apparently also
a consequence of Asian dust transport, occurs at Midway during the fall but is not consistently evident
at any of the other stations. In the southern hemisphere, only at Norfolk Island near Australia do the
data exhibit any consistent and significant seasonality. The cycle there is quite simple with high values
during the austral summer and low concentrations during the winter. The seasonal cycle of the marine
biogenic component (as indicated by MSA) is strongly dependent on the latitude of the station with
strong peaks during the spring/summer at high latitudes grading to virtually no seasonal trend in the
southern hemisphere tropics. The seasonal cycles for most of the constituents of interest have been
previously reported by Prospero et al. [1989] and Savoie et al. [1989]; however, those cycles were
based on a much shorter time series.

In each of the plots we show all of the weekly-average data that was obtained at the station during
the time period shown in the title. For the plots all of the data that was obtained during a given month
regardless of year were assembled into a single data set. The lines connect the composited monthly
means calculated from each of the monthly data sets and the error bars indicate the mean+one standard
arithmetic deviation. It is important to realize that there are many ways that the data can be
summarized (e.g. geometric means, medians, bimodal or multimodal distributions), and the approach
that is most appropriate will depend of the specific types of comparisons that are desired. For this
reason, we show both the arithmetic parameters and several non-parametric statistics in the tables. If a
particular distribution is well characterized by a unimodal lognormal distribution, then the median is a
close approximation to the geometric mean.

North Pacific

The seasonal cycles in the constituent concentrations at the three stations in the North Pacific are
illustrated in Figures 14-16. The most prominent feature at each of the six main stations is the peak in
the dust concentration during the late winter and early spring. This peak is attributed to the transport
of dust from Asia eastward in the mid-latitude westerlies, around the North Pacific high pressure



center, and then westward in the low-latitude easterlies. Although all are related to the same general
phenomenon, the peaks at the individual stations do not all exhibit exactly the same characteristics.

Little will be said with regard to the high latitude Shemya station except that the peak occurs
during the same general time period. Because of the sparsity of data and the complexity of the
meteorology, a more detailed analysis at this station would be almost pure speculation. Results from
studies of Arctic haze indicate that, at times, Shemya may be affected by pollutants from Europe and
North America as well as by the Asian dust. Hence, the air in that region may be very clean on only
rare occasions. :

At the two mid-latitude stations, Midway and Oahu, the concentrations are relatively constant from
March through May after which there is a sharp decline in June to a minimum from July through
September. During the peak dust period, the mean aluminum concentration at Midway (140 ng m”) is
about 25% higher than that at Oahu (110 ng m™). The lower concentration at Oahu is not surprising
considering that Oahu is substantially farther downstream from the source area. During the minimum,
the mean concentrations at the two stations do not differ significantly with monthly means generally
being less than 20 ng m>. In contrast, the mean concentrations at the two stations differ markedly from
October through January. At Midway, there is a clear secondary peak which reaches a maximum
during November; in January, the concentrations drop to levels comparable to those of the early
summer. At Oahu, there is no evidence of a late fall maximum, instead the mean increases
monotonically to the peak in March. The absence of a significant fall peak at Oahu is consistent with
the dust record at Mauna Loa Observatory (Parrington et al., 1983; Parrington and Zoller, 1984). It
should be noted, however, that the secondary peak at Midway appears to be a consequence of very
sporadic transport. A large percentage of the samples during October and Novermber at Midway
actually had concentrations that were comparable to those that normally occur during the summer.

The seasonal cycles in the concentrations of NO;3, nss-SO;, and NH‘:r tend to follow the cycle of
mineral dust at the North Pacific stations. This feature is particularly evident at Midway where the
seasonal cycles for all of the species are fairly clearly defined. Note that for these species, there is no
significant indication of a secondary peak in the late fall.

For biogenic sulfur (as indicated by MSA), the seasonal cycle tends to be strongest in the high
latitudes. At Shemya, the mean MSA concentration during summer is nearly 2 orders of magnitude
higher than during winter. In comparison, the peak MSA concentration at Oahu during May is only a
factor of about 3 higher than that during the minimum in December.

It is important to note that even at Midway, there are numerous samples for which the mean
concentrations of aluminum, NO3, nss-SO;, and NH; during the spring are all comparable to those
that occur during the annual minima. In fact, the concentrations of these species during the spring are
sometimes as low as the minimum in any other month. Hence, it is not correct to say that there is a
consistent “pall” of dust over the North Pacific during the late winter and spring. The transport is
sporadic and strongly dependent on the meteorological conditions. There are clearly periods during the
spring when the air over the North Pacific are as clean or cleaner than during any other part of the
annual cycle.

South Pacific

For the most part the seasonal cycles at American Samoa are comparable to those that were
previously reported by Prospero et al. [1989] and Savoie et al. [1989]. The clearest seasonal cycle is
for NO3 for which the concentrations are highest from September through December and the lowest
during April. There does not appear to be any significant seasonal cycle in either MSA or nss-SO;".
Becasue of the very low concentrations and hence inherent uncertainty, the cycle in aluminum is
difficult to verify. There is a “hint” of a seasonal cycle in Al with lowest concentrations during the
austral winter and highest during the austral summer. Although the inter-month differences for Al are



not significant on the basis of the arithmetic statistical parameters, they are significant on the basis of
non-parametric statistics which are likely to be more reliable and more robust in this case. In any case,
as discussed previously, the concentrations at American Samoa are consistently the lowest measured at
any of the stations in the network. The data for American Samoa is consistent with other available
evidence which indicates that the boundary layer air at American Samoa is among the most pristine that
has ever been studied. Mean concentrations of the mineral dust indicator elements, Al and Co, at
Samoa are comparable to those reported for the South Pole. The concentrations of Cu and Zn were
lower and that of Sb was much lower at Samoa than at the South Pole, indicating that the transport of
pollutants to Samoa is also minimal. These results are consistent with calculated air mass trajectories
which indicate that the air, €Xcept on rare occasions, has traveled long distances over the open ocean
prior to arriving at the island [Merrill et al., unpublished data].

At Rarotonga, the magnitude of the seasonal cycle in NO;j is enhanced somewhat over that at
Samoa, but the timing of the cycle is similar with highest concentrations occuring during September
through November. In contrast to that at American Samoa, a seasonal cycle in MSA is clearly evident
at Rarotonga. Because of the large uncertainties in nss-SO; at Rarotonga (a consequence of the high
sea-salt concentrations), there is no clearly defined seasonal cycle in this species. However, the results
do hint at a cycle with a maximum in the austral summer and a minimum in the winter. The Al
measurements are too few to assess whether or not there is a significant seasonal cycle at Rarotonga;
however, for the common periods of sampling, the concentrations of Al were comparable to those at
Samoa. The commonality in the NOj seasonal cycles at the two sites suggests that the Al seasonal
cycles may also similar.

The seasonal cycles for NO;, nss-SO;, and MSA at Norfolk Island are nearly identical to those
that were previously reported by Savoie et al. [1989]. These species all exhibit higher concentrations
during the austral summer. Likewise, the dust concentrations and seasonal cycle is comparable to that
show previously by Prospero et al. [1989]. As with the North Pacific, the results from Norfolk Island
indicate that dust transport during the summer, although stronger in the mean than during the winter, is
sporadic with substantial periods of very low dust concentration.

The seasonal cycle in dust (and in NO; and anthropogenic nss-SO;* as well) is likely to be stronger
in the regions to the south of Norfolk. The distributions of mica, illite, and kaolinite in the sediments
of the southwest Pacific were likely a consequence of the wind-borne transport of these minerals from
Australian deserts. Eolian transport of dust from Australia to New Zealand across the Tasman Sea is
particularly well documented. The greatest potential for long-range transport from the central
Australian deserts occurs during the austral summer and the highest incidence of dust storms in New
South Wales also occurs in the late spring and summer. The inferred seasonal transport cycle is
supported by the seasonal variations in the distribution of haze at sea. Clearly, the seasonal cycle of
dust measured at Norfolk is consistent with these previous observations and studies.

However, the geographical area affected by the long-range dust transport from Australia has not
been determined. Specifically, there is little information on the north-south extent of the area or,
perhaps more importantly, on the eastward extent. It is conceivable that, as in the northern
hemisphere, significant quantities of dust are transported around the central high pressure center and
into the tradewind regime. Whether or not that actually occurs remains to be determined; however, the
extremely low concentrations measured at American Samoa suggest that such transport is not
significant.  Substantial efforts are currently underway to model the generation and long-range
atmospheric transport of eolian dust. Once these models are verified and/or modified to yield results
that are consistent with actual measurements, the models should be extremely helpful in assessing the
broader scale impact of the dust transport from Australia and other areas of the southern hemisphere.

CONCLUSIONS AND FUTURE WORK



For the respective seasons, most of the results were consistent with the long-term data sets from
the weekly samples collected at these sites during and following the Sea/Air Exchange (SEAREX)
program. However, there were some very significant differences as well as some additional insights
from these higher frequency samples. For example, NOj3, nss SO;, and mineral dust peaks which are
usually concurrent in the weekly samples at Midway exhibit a more complex relationship in the daily
samples. The mean MJ90 nitrate at Oahu was 40% lower than that at Midway whereas the long-term
MJ means were nearly identical. Differences were also evident at the tropical South Pacific stations.
The mean MJ90 MSA concentration at American Samoa (30 ng m'3) was 70% higher than the
November (N89) mean (18 ng m'3); previous results showed little seasonal variation. In contrast, the
MJ90 MSA mean at Rarotonga was 20% lower than the N89 mean. For both N89 and MJ90, the mean
NOj concentration at Rarotonga was 20% lower than that at Samoa; the long-term means at the two
sites were essentially identical to one another. Concurrent nephelometer data at American Samoa
indicate that the light scattering at 550 nm and ambient relative humidity is directly related to the
concentration of nss sulfate which, at this site, is attributed predominantly to marine biogenic sources.

The data that were obtained in this study have been and are being used extensively for comparison
with results from atmospheric chemistry and transport models. We expect that this effort will continue
to increase into the foreseeable future to test and thence to refine the models that are necessary for
extrapolating the measurements on longer time and broader spatial scales. Such extrapolations will be
necessary for a full evaluation of the impact of aerosols on climate in general, of the influence of
anthropogenic perturbations, and of the potential backscatter from aerosols as a function of time and
location. To date, the data have been used in evaluations of modeling efforts for oxidized nitrogen
species (including aerosols) by Penner et al. [1991] and Kasibhatla et al. [1993] and for oxidized sulfur
species (including both nss-SO; and MSA) by Chin et al. [1995]. We have recently supplied our dust
data to I. Tegen (currently at NASA GISS) for comparison with the results from her modeling effort
involving the global generation and atmospheric transport of mineral dust. We have most recently
supplied all of the data that we obtained during the second GLOBE survey flight to Raif Majeed who is
working with Marcia Baker and Dean Hegg at the University of Washington to model injections of
particles from the free troposphere into the marine boundary layer by synoptic-scale subsidence.

The comparisons of our measurements with those from the global-scale general circulation and
transport models are particularly important. Whether the species involved is N, S, or dust, the models
generally fail to transport enough material from continental sources to the remote marine sites to
account for the concentrations that are actually measured. Clearly. some of the physics that is
currently included in the models will need to be reassessed before the results from the models can be
used to accurately extrapolate the measurements and to predict changes that may occur as a
consequence of weather and climate changes.

The overview of the data that is presented above represents only the beginning of a complete
analysis of the data that was obtained under this grant. A significant effort that we are beginning
involves a better assessment of the frequency distributions of the concentrations of the aerosol species
that we have measured for each location and for each month of the year. We will also be evaluating
the changes in the frequency distribution when one considers the daily sampling periods as compared to
the weekly periods. For this purpose, the daily data that we have recently acquired in the North Pacific
as a part of the NASA Pacific Exploratory Mission - West will be an invaluable addition. We have
already shown that the differences in the frequency distributions between weekly and daily samples at
Barbados are quite significant [Savoie et al., 1987]. For some of the sites, particularly for dust at
American Samoa and Rarotonga, we will need to use a technique similar to that reported in Savoie
[1988] becasue the the dust concentrations are frequently near or below the detection limits of the
techniques that we have used.
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TABLE 1. SUMMARY STATISTICS FOR ATMOSPHERIC CONCENTRATIONS DURING GLOBE 1, 1989

Statistic cr NO; so; Na* nss SO MSA NH; Dust’
pg m* pg m* ug m? pg m? ug m? ug m’® pg m? ng m?
SHEMYA
Number 4 4 4 4 4 0 4 3
Arith. Mean  48.47 0.112 7.599 26.971 0.810 R 0.0952 797.7
Std. Arith. Dev. 4.95 0.038 0.550 . 2.662 0.355 . oo 0.0255 197.1
Minimum 44.26 0.070 6.860 24.823 0.452 * vunn 0.0762 672.3
Maximum 53.88 0.163 8.084 30.321 1.257 o oens 0.1328 1024.9
Geo. Mean 48.28 0.107 7.583 26.874 0.752 » ww 0.0930 782.7
Std. Geo. Dev.  1.107 1.412 1.077 1.102 1.568 * one 1.278 1.264
MIDWAY
Number 26 26 26 26 26 26 26 26
Arith. Mean 7.28 0.217 1.662 4.199 0.605 0.0129 0.0958 396.6
Std. Arith. Dev. 3.37 0.082 0.697 1.893 0.415 0.0037 0.0529 415.8
Minimum 2.37 0.086 0.456 1.275 0.136 0.0071 0.0231 46.7
Maximum 16.10 0.355 3.058 9.202 1.682 0.0225 0.2144 1686.1
Geo. Mean 6.54 0.200 1.500 3.782 0.484 0.0124 0.0822 .
Std. Geo. Dev. 1.631 1.527 1.640 1.626 1.999 1.323 1.785  van
Number 29 29 29 29 28 29 29 27
Arith, Mean  10.53 0.178 1.931 5.98 0.368 0.0177 0.0255 21.4
Std. Arith. Dev. 6,10 0.106 0.916 3.32 0.173 0.0075 0.0166 45.1
Minimum 4.73 0.043 1.087 2.90 0.138 0.0083 0.0083 46.8
Maximum 28.95 0.379 4.503 15.92 0.688 0.0337 0.0673 152.7
Geo.Mean 9.41 0.146 1.773 5.39 0.327 0.0162 0.0211 s
Std. Geo. Dev. 1.564 1.938 1.490 1.539 1.664 1.514 1.878  vue
RAROQTONGA
Number 19 19 19 19 19 18 19 19
Arith. Mean 22,66 0.141 3.46 12.64 0.279 0.0182 0.0456 31.9
Std. Arith. Dev. 12.73 0.072 1.84 7.21 0.098 0.0045 0.0370 4.7
Minimum 11.75 0.042 1.92 6.58 0.081 0.0101 0.0016 60.9
Maximum 67.06 0.291 9.93 38.05 0.455 0.0253 0.1446 133.8
Geo. Mean 20.45 0.124 3.16 11.39 0.261 0.0176 0.0322 .+
Std. Geo. Dev. 1.538 1.720 1.502 1.543 1.505 1.301 2.678 * we
Number 17 17 17 17 17 17 17 15
Arith. Mean 9.45 0.236 1.706 5.207 0.395 0.0366 0.1293 201.7
Std. Arith. Dev. 4.81 0.208 0.656 2.533 0.237 0.0098 0.0608 189.5
Minimum 4.24 0.042 1.141 2.532 0.092 0.0223 0.0486 1.6
Maximum 24.56 0.772 3.808 13.099 1.143 0.0543 0.2549 622.5
Geo. Mean 8.59 0.176 1.620 4777 0.338 0.0353 0.1155 104.8
Std. Geo. Dev.  1.538 2.183 1.361 1.506 1.816 1.323 1.656 4.747
KARAMEA
Number 5 5 5 5 5 s 4 6
Arith. Mean  38.10 0.212 5.54 20.65 0.34 0.0437 0.1191 8641.5
Std. Arith. Dev. 6.77 0.055 0.97 3.68 0.16 0.0166 0.0622 6844.1
Minimum 29.72 0.161 4.18 16.16 0.11 0.0308 0.0323 33622
Maximum 48.63 0.302 6.90 26.41 0.53 0.0704 0.1794 21831.3
Geo. Mean 37.63 0.207 5.47 20.39 0.30 0.0416 0.1003 7055.9
Std. Geo. Dev.  1.191 1.273 1.196 1.190 1.881 1.413 2.16 1.93

"Dust is estimated as 12.5 times the measured Aluminum concentration
* indicates missing data or statistics that are not possible to calculate



TABLE 2. SUMMARY STATISTICS OF ATMOSPHERIC CONCENTRATIONS DURING GLOBE II, 1990

Statistic cr NO; sor Na* nss SOJ MSA NH; Dust
pg m’ pgm’ pg m’® ug m® pg m* pg m* ug m* ng m®
SHEMYA
Number 3 3 3 3 3 0 3 s
Arith. Mean  20.93 0.246 3.911 12.078 0.871 * rane 0.1393 967.4
Std. Arith. Dev. 8.61 0.106 1.012 - 4.880 0.255 * rann 0.0283 436.5
Minimum 11.02 0.128 2.746 6.447 0.614 * wonr 0.1118 630.9
Maximum 26.62 0.332 4.579 15.074 1.124 » runn 0.1683 1718.9
Geo. Mean 19.47 0.228 3.813 11.265 0.845 * rean 0.1374 904.5
Std. Geo. Dev. 1.638 1.659 1.330 1.622 1.355 * wan 1.227 1.478
MIDWAY
Number 24 % 24 24 24 2 24 24
Arith. Mean 7.191 0.474 2.044 4.14 1.002 0.0530 0.273 1626.1
Std. Arith. Dev. 4.209 0.226 0.688 2.35 0.537 0.0201 0.156 1313.5
Minimum 2.061 0.110 0.831 1.37 0.324 0.0228 0.045 198.1
Maximum 15.652 0.844 3.475 9.04 2.389 0.0876 0.636 4420.8
Geo. Mean 6.041 0.406 1.923 3.53 0.872 0.0490 0.228 1142.7
Std. Geo. Dev.  1.855 1.867 1.449 1.795 1.728 1.525 1.920 2.474
QAHU
Number 33 33 33 33 33 33 33 33
Arith. Mean 5.816 0.292 1.470 3.486 0.593 0.0306 0.0599 547.0
Std. Arith. Dev. 1.664 0.122 0.419 0.926 0.245 0.0102 0.0552 214.9.
Minimum 2.588 0.114 0.835 1.601 0.317 0.0186 -0.0082 150.8
Maximum 9.492 0.592 2.740 5.229 1.503 0.0626 0.2778 933.2
Geo. Mean 5.571 0.269 1.414 3.357 0.553 0.0293 » senn 497.7
Std. Geo. Dev.  1.358 1.527 1.325 1.333 1.447 1.347 o 1.610
AMERICAN SAMQA
Number 31 31 31 31 31 31 31 77
Arith. Mean 7.514 0.0940 1.566 4.416 0.454 0.0297 0.0172 14.4
Std. Arith. Dev. 2.209 0.0477 0.377 1.230 0.229 0.0159 0.0122 19.5
Minimum 3.343 0.0364 0.696 1.956 0.112 0.0087 0.0020 -13.4
Maximum 13.917 0.2067 2.399 7.878 0.868 0.0656 0.0582 68.9
Geo. Mean 7.200 0.0837 1.516 4.245 0.399 0.0256 0.0130 .
Swd. Geo. Dev. 1.353 1.6242 1.309 1.340 1.698 1.778 2.285 » o
RARQTONGA
Number 26 26 26 26 26 26 26 26
Arith. Mean  18.80 0.076 2.756 10.44 0.129 0.0144 0.0557 242
Std. Arith, Dev. 6.82 0.034 0.886 3.81 0.223 0.0044 0.0698 74.2
Minimum 10.30 0.018 1.563 5.91 0.334 0.0084 0.0106 94.3
Maximum 36.73 0.143 4.842 20.56 0.841 0.0295 0.2722 2438
Geo. Mean 17.74 0.068 2.627 9.85 . wen 0.0139 * wxan .
Std. Geo. Dev.  1.411 1.658 1.368 1.402 » van 1.321 R * wn
NORFOLK ISLAND
Number 17 17 17 17 17 17 17 17
Arith. Mean  11.19 0.109 1.697 6.15 0.149 0.0125 0.0505 40.5
Std. Arith. Dev. 7.45 0.140 1.078 3.93 0.135 0.0057 0.0411 7.7
Minimum 4.49 0.006 0.815 2.52 0.028 0.0074 0.0063 £7.5
Maximum 30.40 0.504 4.37 15.86 0.443 0.0293 0.1627 242.3
Geo. Mean 9.69 0.057 1.486 5.37 0.104 0.0116 0.0376 ..
Std. Geo. Dev.  1.662 3.233 1.628 1.643 2.401 1.458 2.264 . ean

™Dust is estimated as 12.5 times the measured Aluminum concentration
* indicates missing dara or statistics that are not possible to calculate
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FIGURE 11

Midway Island
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FIGURE 12

-OAHU
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FIGURE 13

Norfolk Island
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FIGURE 14

Shemya, Alaska: 1981-1994
Weekly and Monthly Means
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FIGURE 15

- Midway Island: 1981-1994
Weekly and Monthly Means
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FIGURE 16

Oahu, Hawaii: 1981-1994
Weekly and Monthly Means
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FIGURE 18
Rarotonga: 1989-1993
Weekly and Monthly Means
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FIGURE 19

Norfolk Island: 1983-1993
Weekly and Monthly Means
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FIGURE 20

Karamea, New Zealand: 1986-1990
Weekly and Monthly Means
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