752 research outputs found

    Carotenoids and antioxidant enzymes as biomarkers of the impact of heavy metals in food chain

    Get PDF
    Antioxidant enzymes (catalase and peroxidase) and carotenoids (lutein and â-carotene) are often used as biomarkers of metal contamination of water and agricultural soils. In this study, the effects of heavy metals present in irrigation water on the aforementioned carotenoids of potatoes (Solanum tuberosum L.) and carrots (Daucus carota L.), cultivated in a greenhouse and irrigated with a water solution including different levels of Cr(VI) and Ni(II) were investigated. These results were compared to the levels of the same metabolites that had been assessed in market-available potato and carrot samples. The findings indicated that the levels of the examined metabolites on the treated with Cr and Ni samples, resemble the levels of the same parameters in the market samples, originating from polluted areas. Therefore, the antioxidant enzymes, catalase and peroxidase, and the carotenoids, lutein and â-carotene, could be handled as indicators of heavy metal pollution

    Global risk from the atmospheric dispersion of radionuclides by nuclear power plant accidents in the coming decades

    Get PDF
    We estimate the global risk from the release and atmospheric dispersion of radionuclides from nuclear power plant accidents using the EMAC atmospheric chemistry–general circulation model. We included all nuclear reactors that are currently operational, under construction and planned or proposed. We implemented constant continuous emissions from each location in the model and simulated atmospheric transport and removal via dry and wet deposition processes over 20 years (2010–2030), driven by boundary conditions based on the IPCC A2 future emissions scenario. We present global overall and seasonal risk maps for potential surface layer concentrations and ground deposition of radionuclides, and estimate potential doses to humans from inhalation and ground-deposition exposures to radionuclides. We find that the risk of harmful doses due to inhalation is typically highest in the Northern Hemisphere during boreal winter, due to relatively shallow boundary layer development and limited mixing. Based on the continued operation of the current nuclear power plants, we calculate that the risk of radioactive contamination to the citizens of the USA will remain to be highest worldwide, followed by India and France. By including stations under construction and those that are planned and proposed, our results suggest that the risk will become highest in China, followed by India and the USA

    Large-Scale Modelling of the Environmentally-Driven Population Dynamics of Temperate Aedes albopictus (Skuse)

    Get PDF
    The Asian tiger mosquito, Aedes albopictus, is a highly invasive vector species. It is a proven vector of dengue and chikungunya viruses, with the potential to host a further 24 arboviruses. It has recently expanded its geographical range, threatening many countries in the Middle East, Mediterranean, Europe and North America. Here, we investigate the theoretical limitations of its range expansion by developing an environmentally-driven mathematical model of its population dynamics. We focus on the temperate strain of Ae. albopictus and compile a comprehensive literature-based database of physiological parameters. As a novel approach, we link its population dynamics to globally-available environmental datasets by performing inference on all parameters. We adopt a Bayesian approach using experimental data as prior knowledge and the surveillance dataset of Emilia-Romagna, Italy, as evidence. The model accounts for temperature, precipitation, human population density and photoperiod as the main environmental drivers, and, in addition, incorporates the mechanism of diapause and a simple breeding site model. The model demonstrates high predictive skill over the reference region and beyond, confirming most of the current reports of vector presence in Europe. One of the main hypotheses derived from the model is the survival of Ae. albopictus populations through harsh winter conditions. The model, constrained by the environmental datasets, requires that either diapausing eggs or adult vectors have increased cold resistance. The model also suggests that temperature and photoperiod control diapause initiation and termination differentially. We demonstrate that it is possible to account for unobserved properties and constraints, such as differences between laboratory and field conditions, to derive reliable inferences on the environmental dependence of Ae. albopictus populations

    The electromagnetic form factors of the Omega in lattice QCD

    Get PDF
    We present results on the Omega baryon electromagnetic form factors using Nf=2+1N_f=2+1 domain-wall fermion configurations for three pion masses in the range of about 350 to 300 MeV. We compare results obtained using domain wall fermions with those of a mixed-action (hybrid) approach, which combine domain wall valence quarks on staggered sea quarks, for a pion mass of about 350 MeV. We pay particular attention in the evaluation of the subdominant electric quadrupole form factor to sufficient accuracy to exclude a zero value, by constructing a sequential source that isolates it from the dominant form factors. The Ω\Omega^- magnetic moment, μΩ\mu_{\Omega^{-}}, the electric charge and magnetic radius, rE0/M12\langle r^{2}_{E0/M1} \rangle, are extracted for these pion masses. The electric quadrupole moment is determined for the first time using dynamical quarks.Comment: 13 pages, 10 Figure

    Spectrum and thermodynamic properties of two-dimensional N=(1,1) super Yang-Mills theory with fundamental matter and a Chern-Simons term

    Get PDF
    We consider N=(1,1) super Yang-Mills theory in 1+1 dimensions with fundamentals at large-N_c. A Chern-Simons term is included to give mass to the adjoint partons. Using the spectrum of the theory, we calculate thermodynamic properties of the system as a function of the temperature and the Yang-Mills coupling. In the large-N_c limit there are two non-communicating sectors, the glueball sector, which we presented previously, and the meson-like sector that we present here. We find that the meson-like sector dominates the thermodynamics. Like the glueball sector, the meson sector has a Hagedorn temperature T_H, and we show that the Hagedorn temperature grows with the coupling. We calculate the temperature and coupling dependence of the free energy for temperatures below T_H. As expected, the free energy for weak coupling and low temperature grows quadratically with the temperature. Also the ratio of the free energies at strong coupling compared to weak coupling, r_{s-w}, for low temperatures grows quadratically with T. In addition, our data suggest that r_{s-w} tends to zero in the continuum limit at low temperatures.Comment: 34 p

    The Critical Hopping Parameter in O(a) improved Lattice QCD

    Full text link
    We calculate the critical value of the hopping parameter, κc\kappa_c, in O(a) improved Lattice QCD, to two loops in perturbation theory. We employ the Sheikholeslami-Wohlert (clover) improved action for Wilson fermions. The quantity which we study is a typical case of a vacuum expectation value resulting in an additive renormalization; as such, it is characterized by a power (linear) divergence in the lattice spacing, and its calculation lies at the limits of applicability of perturbation theory. The dependence of our results on the number of colors NN, the number of fermionic flavors NfN_f, and the clover parameter cSWc_{SW}, is shown explicitly. We compare our results to non perturbative evaluations of κc\kappa_c coming from Monte Carlo simulations.Comment: 11 pages, 2 EPS figures. The only change with respect to the original version is inclusion of the standard formulae for the gauge fixing and ghost parts of the action. Accepted for publication in Physical Review

    N=(1,1) super Yang--Mills theory in 1+1 dimensions at finite temperature

    Full text link
    We present a formulation of N=(1,1) super Yang-Mills theory in 1+1 dimensions at finite temperature. The partition function is constructed by finding a numerical approximation to the entire spectrum. We solve numerically for the spectrum using Supersymmetric Discrete Light-Cone Quantization (SDLCQ) in the large-N_c approximation and calculate the density of states. We find that the density of states grows exponentially and the theory has a Hagedorn temperature, which we extract. We find that the Hagedorn temperature at infinite resolution is slightly less than one in units of (g^(2) N_c/pi)^(1/2). We use the density of states to also calculate a standard set of thermodynamic functions below the Hagedorn temperature. In this temperature range, we find that the thermodynamics is dominated by the massless states of the theory.Comment: 16 pages, 8 eps figures, LaTe

    Introductory Chapter: Current Knowledge on Biogenic Amines

    Get PDF

    Nordihydroguaiaretic acid recovery from Larrea tridentata by microwave-assisted extraction

    Get PDF
    Nordihydroguaiaretic acid (NDGA) is a powerful antioxidant with biological activities of great interest in several health areas, including antiviral, cancer chemopreventive, and antitumorgenic. Little information is available on extraction methods of NDGA from Larrea tridentata. Hence, the aim of this study was to develop a rapid and effective microwave-assisted extraction (MAE) method for NDGA recovery from Larrea tridentata leaves, and to compare the results obtained with those found using conventional heatreflux extraction (HRE)
    corecore